Journal of Thermal Analysis and Calorimetry

, Volume 109, Issue 1, pp 131–139 | Cite as

Thermoanalytical, magnetic and structural study of Co(II) complexes with substituted salicylaldehydes and neocuproine

  • Maria Lalia-Kantouri
  • Maria Gdaniec
  • Agnieszka Czapik
  • Konstantinos Chrissafis
  • Wieslawa Ferenc
  • Jan Sarzynski
  • Christos D. Papadopoulos


In this study, simultaneous TG/DTG-DTA technique was used for two cobalt(II) complexes with neocuproine(neoc) and the anion of a substituted salicylaldehyde ligand (X-salo) (X = 3-OCH3, or 5-CH3) with the general formula [Co(X-salo)2(neoc)], to determine their thermal degradation in inert atmosphere, which was found to be a multi-step decomposition related to the release of the ligand molecules. The solid material at 1300 °C (verified with PXRD) was a mixture of carbonaceous metal cobalt. Evolved gas analysis by coupled TG-MS verified the elimination of a formaldehyde molecule in the first decomposition stage, initially proposed by the percentage mass loss data. By single-crystal X-ray diffraction analysis an octahedral geometry of the complex [Co(3-OCH3-salo)2(neoc)] was found. The variable temperature magnetic susceptibility measurements showed a paramagnetic nature of the complexes, in accordance with their molecular structure. Finally, for the determination of the activation energy (E) two different methods (the isoconversional methods of Ozawa, Flynn and Wall (OFW) and Friedman) were used comparatively.


Crystal structure TG/DTG-DTA Kinetics Cobalt complexes Salicylaldehydes Neocuproine Magnetics TG-MS 

Supplementary material

10973_2011_1692_MOESM1_ESM.jpg (104 kb)
Fig. 1s XRD pattern of the thermal decomposition material at 1300 °C in N2, for compounds (1) [Co(3-OCH3-salo)2(neoc)] and/or (2) [Co(5-CH3-salo)2(neoc)]. (JPEG 105 kb)


  1. 1.
    Prasad RN, Agrawal A. Synthesis and spectroscopic studies of mixed ligand complexes of cobalt(II) with salicylaldehyde, hydroxyarylketones and beta-diketones. J Indian Chem Soc. 2006;83(1):75–7.Google Scholar
  2. 2.
    Hussain ST, Ahmad H, Atta MA, Afzal M, Saleem M. High performance liquid chromatography (HPLC), atomic absorption spectroscopy (AAS) and infrared spectroscopy determination and solvent extraction of uranium, using bis(salicylaldehyde) propylene diamine as complexing agent. J Trace Microprobe Tech. 1998;16(2):139–49.Google Scholar
  3. 3.
    Sajith P, Ummer MT, Mandal N, Mandot SK, Agrawal SL, Bandyopadhyay S, Mukhopadhyay R, D’Cruz B, Deuri AS, Kuriakose P. Synthesis of cobalt complexes and their evaluation as an adhesion promoter in a rubber-steel wire system. J Adhesion Sci Technol. 2005;19(16):1475–91.CrossRefGoogle Scholar
  4. 4.
    Sun Y-X, Gao G-Z. Bis(4-bromo-2-formylphenolato-k 2 O,O′)copper(II). Acta Cryst. 2005;E61(2):m354–5.Google Scholar
  5. 5.
    Chen Q. Bis(4-bromo-2-formylphenolato-k 2 O,O′)zinc(II). Acta Cryst. 2006;E62(1):m56–7.Google Scholar
  6. 6.
    Yang Y-M, Lu P-C, Zhu T-T, Liu C-H. Bis(2-formylphenolato-k 2 O,O′)iron(II). Acta Cryst. 2007;E63(6):m1613.Google Scholar
  7. 7.
    Pessoa JC, Cavaco I, Correira I, Tomaz I, Duarte T, Matias PM. Oxovanadium(IV) complexes with aromatic aldehydes. J Inorg Biochem. 2000;80(1):35–9.CrossRefGoogle Scholar
  8. 8.
    Lalia-Kantouri M, Papadopoulos CD, Hatzidimitriou AG, Skoulika S. Hetero-heptanuclear (Fe–Na) complexes of salicylaldehydes: crystal and molecular structure of [Fe2(3-OCH3-salo)8/Na5]·3OH·8H2O. Struct Chem. 2009;20(2):177–84.CrossRefGoogle Scholar
  9. 9.
    Lalia-Kantouri M, Dimitriadis T, Papadopoulos CD, Gdaniec M, Czapik A, Hatzidimitriou AG. Synthesis and structural characterization of iron(III) complexes with 2-hydroxyphenones. Z Anorg Allg Chem. 2009;635(13):2185–90.CrossRefGoogle Scholar
  10. 10.
    Bedell SA, Martell AE. Oxidation of 2,6-di-tert-butylphenol by molecular oxygen. Catalysis by tetrakis(bipyridyl)(μ-peroxo)(μ-hydroxo)dicobalt(III). Inorg Chem. 1983;22(2):364–7.CrossRefGoogle Scholar
  11. 11.
    Papadopoulos CD, Hatzidimitriou AG, Voutsas GP, Lalia-Kantouri M. Synthesis and characterization of new addition compounds of bis(substituted-salicylaldehydo) cobalt(II) with 2,2′-bipyridine (bipy). Crystal and molecular structures of [CoII(3-methoxy-salicylaldehyde)2(bipy)]·CH3OH (1) and [CoII(bipy)3]Br2·0.5(5-chloro-salicylaldehydeH). 1.5CH3OH (5). Polyhedron. 2007;26(5):1077–86.CrossRefGoogle Scholar
  12. 12.
    Papadopoulos CD, Lalia-Kantouri M, Jaud J, Hatzidimitriou AG. Substitution effect on new Co(II) addition compounds with salicylaldehydes and the nitrogenous bases phen or neoc: crystal and molecular structures of [CoII(5-NO2-salicylaldehyde)2(phen)], [CoII(5-CH3-salicylaldehyde)2(neoc)] and [CoII(5-Cl-salicylaldehyde)2(neoc)]. Inorg Chim Acta. 2007;360(11):3581–9.CrossRefGoogle Scholar
  13. 13.
    Papadopoulos CD, Hatzidimitriou AG, Quirós M, Sigalas MP, Lalia-Kantouri M. Synthesis, characterization, thermal and theoretical studies of cobalt(II) addition compounds with 2-hydroxy-phenones and α-diimines. Crystal and molecular structures of [Co(2-hydroxy- benzophenone)2(bipy)]·2-hydroxy-benzophenoneH (3) and [Co(2-hydroxy- benzophenone)2(phen)] (8). Polyhedron, 2011; 30(3):486–96. doi: 10.1016/j.poly.2010.11.010.
  14. 14.
    Curtis SA, Kurdziel K, Materazzi S, Vecchio S. Crystal structure and thermoanalytical study of a manganese(II) complex with 1-allylimidazole. J Therm Anal Calorim. 2008;92(1):109–14.CrossRefGoogle Scholar
  15. 15.
    Dziewulska-Kulaczkowska A, Mazur L, Ferenc W. Thermal, spectroscopic and structural studies of zinc(II) complex with Nicotinamide. J Therm Anal Calorim. 2009;96(1):255–60.CrossRefGoogle Scholar
  16. 16.
    Ye HM, Ren N, Li H, Zhang JJ, Sum SJ, Tian L. Synthesis, crystal structure and thermal decomposition kinetics of complex [Nd(BA)3bipy]2. J Therm Anal Calorim. 2010;101(1):205–11.CrossRefGoogle Scholar
  17. 17.
    Figgis BN, Nyholm RS. A convenient solid for calibration of Gouy magnetic susceptibility apparatus. J Chem Soc. 1958;4190:1.Google Scholar
  18. 18.
    Oxford Diffraction program name(s), CrysAlis CCD and CrysAlis RED Ver.1.171.31. Abingdon, Oxfordshire, England: Oxford Diffraction Ltd.; 2006.Google Scholar
  19. 19.
    Sheldrick GM. SHELXS-97, program for solution of crystal structures, and SHELXL-97 program for crystal structures refinement. Göttingen: University of Göttingen; 1997.Google Scholar
  20. 20.
    Sheldrick GM. A short history of SHELX. Acta Cryst. 2008;A64:112–22.Google Scholar
  21. 21.
    O’Coonor JCh. Progress in inorganic chemistry. New York: Wiley; 1982. p. 204–83.Google Scholar
  22. 22.
    Martin RL. New pathways in inorganic chemistry. Cambridge: Cambridge University Press; 1968. p. 149–231.Google Scholar
  23. 23.
    Figgis NB, Lewis J. Progress in inorganic chemistry. New York: Interscience; 1964. p. 37.CrossRefGoogle Scholar
  24. 24.
    Burger K. Coordination chemistry: experimental methods. Budapest: Akademiai Kiado; 1973.Google Scholar
  25. 25.
    Earnshaw A. Introduction to magnetochemistry. London: Academic Press; 1968.Google Scholar
  26. 26.
    Cotton FA, Wilkinson G. Advanced inorganic chemistry. New York: Wiley; 1988. p. 730.Google Scholar
  27. 27.
    Patel KN, Patel NH, Patel KM, Patel MN. Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) mixed-ligand complexes. Synth React Inorg Metal Org Chem. 2000;30(5):921–30.CrossRefGoogle Scholar
  28. 28.
    Ferenc W, Cristvao B, Sarzynski J. Thermal and magnetic behavior of 5-chloro-2-nitrobenzoates of Co(II), Ni(II) and Cu(II). J Therm Anal. 2010;101(2):761–7.CrossRefGoogle Scholar
  29. 29.
    Dziewulska-Kulaczkowska A. Manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes with 4-oxo-4H-1-benzopyran-3-carboxaldehyde: thermal, spectroscopic and magnetic characterization. J Therm Anal. 2010;101(3):1019–26.CrossRefGoogle Scholar
  30. 30.
    Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polymer Lett. 1966;4(5):323–8.CrossRefGoogle Scholar
  31. 31.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(x):1881–6.CrossRefGoogle Scholar
  32. 32.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2(3):301–24.CrossRefGoogle Scholar
  33. 33.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6(x):183–95.Google Scholar
  34. 34.
    Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Maria Lalia-Kantouri
    • 1
  • Maria Gdaniec
    • 2
  • Agnieszka Czapik
    • 2
  • Konstantinos Chrissafis
    • 3
  • Wieslawa Ferenc
    • 4
  • Jan Sarzynski
    • 5
  • Christos D. Papadopoulos
    • 1
  1. 1.Department of Chemistry, Lab of Inorganic ChemistryAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Faculty of ChemistryAdam Mickiewicz UniversityPoznanPoland
  3. 3.School of Physics, Solid State Physics Department, Faculty of ScienceAristotle University of ThessalonikiThessalonikiGreece
  4. 4.Department of General and Coordination Chemistry, Faculty of ChemistryMaria Curie-Sklodowska UniversityLublinPoland
  5. 5.Institute of PhysicsMaria Curie-Sklodowska UniversityLublinPoland

Personalised recommendations