Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 3, pp 983–987 | Cite as

Decomposition processes of nickel hydroxide



The dehydration processes of nickel hydroxide were studied by means of thermogravimetry in a temperature range from 300 to 900 K. The kinetics of the low-temperature dehydroxylation (≈300–600 K) was studied under non-isothermal conditions. A model-free method was used to calculate the activation energy and to analyze the stepwise checking; the non-linear regression method was applied to calculate the kinetic parameters of multi-stage decomposition reactions. The features of the dehydroxylation kinetics for the multi-stage process are explained by the formation and decomposition of hydrogel and xerogel phases.


Metal hydroxides Model-free kinetics Nano-dimensional materials Non-isothermal kinetics Thermal analysis 


  1. 1.
    Bakovets VV, Trushnikova LN, Korol’kov IV, Sokolov VV, Dolgovesova IP, Pivovarova TD. Synthesis of nanostructured nickel oxide. Russ J Gen Chem. 2009;79:356–61.CrossRefGoogle Scholar
  2. 2.
    Dong L, Chu Y, Sun W. Controllable synthesis of nickel hydroxide and porous nickel oxide nanostructures with different morphologies. Chem A Europ J. 2008;14:5064–72.CrossRefGoogle Scholar
  3. 3.
    Kuang D-B, Lei B-X, Pan Y-P, Yu X-Y, Su C-Y. Fabrication of novel hierarchical β-Ni(OH)2 and NiO microspheres via an easy hydrothermal process. J Phys Chem C. 2009;113:5508–13.CrossRefGoogle Scholar
  4. 4.
    Zhu J, Gui Z, Ding Y, Wang Z, Hu Y, Zou M. A facile route to oriented nickel hydroxide nanocolumns and porous nickel oxide. J Phys Chem C. 2007;111:5622–7.CrossRefGoogle Scholar
  5. 5.
    Jiao F, Hill AH, Harrison A, Berko A, Chadwick AV, Bruce PG. Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution. J Amer Chem Soc. 2008;130:5262–6.CrossRefGoogle Scholar
  6. 6.
    Lai T-L, Lai Y-L, Yu J-W, Shu Y-Y, Wang C-B. Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide. Mater Res Bull. 2009;44:2040–4.CrossRefGoogle Scholar
  7. 7.
    Netzsch Thermokinetics 2. Version 2004.05.
  8. 8.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  9. 9.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci (C). 1963;6:183–95.Google Scholar
  10. 10.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38:1881–6.CrossRefGoogle Scholar
  11. 11.
    Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203(C):159–65.CrossRefGoogle Scholar
  12. 12.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:478–523.Google Scholar
  13. 13.
    Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa–Flynn–Wall analysis. Thermochim Acta. 1992;203(C):167–75.CrossRefGoogle Scholar
  14. 14.
    Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermo-analytical data-advantages and limitations. Thermochim Acta. 2002;391:119–27.CrossRefGoogle Scholar
  15. 15.
    Vyazovkin S. Model-free kinetics: staying free of multiplaying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.CrossRefGoogle Scholar
  16. 16.
    Simon P. The single-step approximation: attributes, strong and weak sides. J Therm Anal Calorim. 2007;88:709–15.CrossRefGoogle Scholar
  17. 17.
    Simon P. Single-step kinetics approximation employing non-arrhenius temperature functions. J Therm Anal Calorim. 2005;79:703–8.CrossRefGoogle Scholar
  18. 18.
    Logvinenko V. Stability and reactivity of coordination and inclusion compounds in the reversible processes of thermal dissociation. Thermochim Acta. 1999;340–1:293–9.CrossRefGoogle Scholar
  19. 19.
    Logvinenko V. Solid state coordination chemistry. The quantitative thermoanalytical study of thermal dissociation reactions. J Therm Anal Calorim. 2000;60:9–15.CrossRefGoogle Scholar
  20. 20.
    Logvinenko V, Fedorov V, Mironov Yu, Drebushchak V. Kinetic and thermodynamic stability of cluster compounds under heating. J Therm Anal. 2007;88:687–92.CrossRefGoogle Scholar
  21. 21.
    Logvinenko V, Drebushchak V, Pinakov D, Chekhova G. Thermodynamic and kinetic stability of inclusion compounds under heating. J Therm Anal. 2007;90:23–30.CrossRefGoogle Scholar
  22. 22.
    Freitas MBJG, Silva RKS, Anjos DM, Rozario A, Manoel PG. Effect of synthesis conditions on characteristics of the precursor material used in NiO·OH/Ni(OH)2 electrodes of alkaline batteries. J Power Sources. 2007;165:916–21.CrossRefGoogle Scholar
  23. 23.
    Franco F, Ruiz Cruz MD. A comparative study of the dehydroxylation process in untreated and hydrazine–deintercalated dickite. J Therm Anal Calorim. 2006;85:369–75.CrossRefGoogle Scholar
  24. 24.
    Vergbitsky FR. High-frequency thermal analysis, 2nd edn. Perm: Perm State University; 1981 (in Russian).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Nikolaev Institute of Inorganic ChemistrySiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations