Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 2, pp 527–533 | Cite as

The effect of water molecule on the thermal stability of lanthanide compounds with 1,3-benzeneditetrazol-5-yl

  • Cheng-Fang Qiao
  • Qing Wei
  • Zheng-Qiang Xia
  • Chun-Sheng Zhou
  • San-Ping Chen
Article

Abstract

Six lanthanide compounds [Ln(H2O)9](m-BDTH)3·9(H2O) where Ln = La (1), and [Ln(H2O)8](m-BDTH)3·9(H2O) (m-BDTH2 = 1,3-benzeneditetrazol-5-yl) where Ln = Lu (2), Yb (3), Er (4), Ho (5) and Y (6) were hydrothermally synthesized and characterized by elemental analyses, infrared spectra, powder X-ray diffraction (PXRD) and X-ray single crystal diffraction. PXRD indicates that 26 are isomorphous. Structural analyses reveal that 1 is coordinated by nine water molecules forming a capped-square antiprism, while 26 are coordinated by eight water molecules forming a simple square antiprismatic geometry. Effects of water molecules on thermal stability were also discussed by thermogravimetric (TG), DSC, and PXRD under different temperatures. TG analyses suggest that 1 loses lattice and coordinated water molecules with no diacritical boundary, and 6 removes lattice water molecules first and then coordinated water molecules. DSC and PXRD further confirm the consequence.

Keywords

Intermolecular interaction Lanthanide compound 1,3-Benzeneditetrazol-5-yl Thermal stability 

Notes

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (grant no. 20873100), and the Nature Science Foundation of Shaanxi Province (grant nos. FF10091 and SJ08B09).

References

  1. 1.
    Lehn JM. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed. 1990;29:1304–19.CrossRefGoogle Scholar
  2. 2.
    Batten SR. Topology of interpenetration. CrystEngComm. 2001;3:67–72.CrossRefGoogle Scholar
  3. 3.
    Braga D, Grepioni F. Intermolecular interactions in nonorganic crystal engineering. Acc Chem Res. 2000;33:601–8.CrossRefGoogle Scholar
  4. 4.
    Mooibroek TJ, Gamez P, Reedijk J. Lone pair–π interactions: a new supramolecular bond? CrystEngComm. 2008;10:1501–15.CrossRefGoogle Scholar
  5. 5.
    Chen SP, Li N, Wei Q, Gao SL. Synthesis, structure analysis and thermodynamics of [Ni(H2O)4(TO)2](NO3)2·2H2O (TO = 1,2,4-triazole-5-one). J Therm Anal Calorim. 2010;100:1115–20.CrossRefGoogle Scholar
  6. 6.
    Hosseini MW. Molecular tectonics: from molecular recognition of anions to molecular networks. Coord Chem Rev. 2003;240:157–66.CrossRefGoogle Scholar
  7. 7.
    Ballbh A, Trivedi DR, Dastidar P, Suresh E. Hydrogen bonded supramolecular network in organic salts: crystal structures of acid–base salts of dicarboxylic acids and amines. CrystEngComm. 2002;4:135–42.CrossRefGoogle Scholar
  8. 8.
    Burrows AD, Chan CW, Chowdhry MM, McGrady JE, Mingos DMP. Multidimensional crystal engineering of bifunctional metal complexes containing complementary triple hydrogen bonds. Chem Soc Rev. 1995;24:329–39.CrossRefGoogle Scholar
  9. 9.
    Logvinenko V. Stability of supramolecular compounds under heating. J Therm Anal Calorim. 2010;101:577–83.CrossRefGoogle Scholar
  10. 10.
    Kawata S, Kumagai H, Adachi K, Kitagawa S. Novel layered structures constructed from metal(II)–chloranilate monomer compounds. J Chem Soc Dalton Trans. 2000;14:2409–17.CrossRefGoogle Scholar
  11. 11.
    Liu K, Brown MG, Carter C, Saykally RJ, Gregory JK, Clary DC. Characterization of a cage form of the water hexamer. Nature. 1996;381:501–3.CrossRefGoogle Scholar
  12. 12.
    Nauta K, Miller RE. Formation of cyclic water hexamer in liquid helium: the smallest piece of ice. Science. 2000;287:293–5.CrossRefGoogle Scholar
  13. 13.
    Butler RN. In: Katritzky AR, Rees CW, Scriven EFV, editors. Comprehensive heterocyclic chemistry II. Oxford: Pergamon Press; 1996. pp. 621–2.Google Scholar
  14. 14.
    Herr RJ. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg Med Chem. 2002;10:3379–93.CrossRefGoogle Scholar
  15. 15.
    Eddaoudi M, Moler DB, Li HL, Chen BL, Reineke TM, O’Keeffe M, Yaghi OM. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc Chem Res. 2001;34:319–30.CrossRefGoogle Scholar
  16. 16.
    Moulton B, Zaworotko MJ. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev. 2001;101:1629–58.CrossRefGoogle Scholar
  17. 17.
    Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers. Angew Chem Int Ed. 2004;43:2334–75.CrossRefGoogle Scholar
  18. 18.
    Zhang JP, Lin YY, Huang XC, Chen XM. Molecular chairs, zippers, zigzag and helical chains: chemical enumeration of supramolecular isomerism based on a predesigned metal–organic building-block. Chem Commun. 2005;40:1258–60.CrossRefGoogle Scholar
  19. 19.
    Kostakis GE, Abbas G, Anson CE, Powell AK. A new class of 3-D porous framework: [Ln(H2O)n]3+ ions act as pillars between π-stacked and H-bonded sheets of (m-BDTH) organic anions in [Ln(H2O)n](m-BDTH)3·9(H2O)(Ln = Pr, n = 9; Ln = Gd, n = 8). CrystEngComm. 2008;10:1117–9.CrossRefGoogle Scholar
  20. 20.
    Sheldrick GM. SHELXS-97, program for X-ray crystal structure determination. Göttingen: Göttingen University; 1997.Google Scholar
  21. 21.
    Sheldrick GM. SHELXL-97, program for X-ray crystal structure refinement. Göttingen: Göttingen University; 1997.Google Scholar
  22. 22.
    Fleming A, Kelleher F, Mahon MF, McGinley J, Prajapati V. Reactions of bis(tetrazole)phenylenes. Surprising formation of vinyl compounds from alkyl halides. Tetrahedron. 2005;61:7002–11.CrossRefGoogle Scholar
  23. 23.
    Zhang JP, Chen XM. Crystal engineering of binary metal imidazolate and triazolate frameworks. Chem Commun. 2006;41:1689–99.CrossRefGoogle Scholar
  24. 24.
    Ouellette W, Hudson BS, Zubieta J. Hydrothermal and structural chemistry of the zinc(II)- and cadmium(II)-1,2,4-triazolate systems. Inorg Chem. 2007;46:4887–904.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Cheng-Fang Qiao
    • 1
    • 2
  • Qing Wei
    • 1
  • Zheng-Qiang Xia
    • 1
  • Chun-Sheng Zhou
    • 2
  • San-Ping Chen
    • 1
  1. 1.Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials ScienceNorthwest UniversityXi’anChina
  2. 2.Department of ChemistryShangluo UniversityShangluoChina

Personalised recommendations