Skip to main content
Log in

Structural analysis and thermochemistry of “A” type phosphostrontium carbonate hydroxyapatites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

“A” type phosphostrontium carbonate hydroxyapatites, having the general formula Sr10(PO4)6(OH)(2−2x)(CO3) x with 0 ≤ x ≤ 1, were synthesised by solid gas reaction at high temperature. The samples were characterised by X-ray diffraction and infrared spectroscopy. Analysis of carbonate was achieved by coulometry and Rietveld refinement of the structure. Using an isoperibol calorimeter, the heat of solution of these products was measured at 298 K in 9 wt% nitric acid solution. Thermochemical cycle was proposed and complementary experiences were performed to reach the standard enthalpies of formation of these compounds. The results showed a decrease of the enthalpy of formation with the amount of carbonate introduced in the lattice, suggesting an increase of stability due to this kind of substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. El Asri S, Laghzizil A, Alaoui A, Saoiabi A, M’Hamdi R, El Abbassi K, Hakam A. Structure and thermal behaviors of Moroccan phosphate rock (bengurir). J Therm Anal Calorim. 2009;95:15–9.

    Article  CAS  Google Scholar 

  2. Mothé CG, Mothé Filho HF, Lima RJC. Thermal study of the fossilization processes of the extinct fishes in araripe geopark. J Therm Anal Calorim. 2008;93:101–4.

    Article  Google Scholar 

  3. Achchar M, Lamonier C, Ezzamarty A, Lakhdar M, Leglise J, Payen E. New apatite-based supports prepared by industrial phosphoric acid for HDS catalyst synthesis. C R Chim. 2009;12:677–82.

    Article  CAS  Google Scholar 

  4. Reisfeld R, Gaftb M, Boulonc G, Panczer C, Jsrgensend CK. Laser-induced luminescence of rare-earth elements in natural fluor-apatites. J Lumin. 1996;69:343–53.

    Article  CAS  Google Scholar 

  5. Mahabole MP, Aiyer RC, Ramakrishna CV, Sreedhar B, Khairnar RS. Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull Mater Sci. 2005;28(6):535–45.

    Article  CAS  Google Scholar 

  6. Bonhomme C, Beaudet-Savignat S, Chartier T, Maître A, Sauvet A, Soulestin B. Sintering kinetics and oxide ion conduction in Sr-doped apatite-type lanthanum silicates, La9Sr1Si6O26.5. Solid State Ionics. 2009;180:1593–8.

    Article  CAS  Google Scholar 

  7. Mezahi FZ, Oudadesse H, Harabi A, Lucas-Girot A, Le Gal Y, Chaair H, Cathelineau G. Dissolution kinetic and structural behaviour of natural hydroxyapatite vs. thermal treatment. Comparison to synthetic hydroxyapatite. J Therm Anal Calorim. 2009;95:21–9.

    Article  CAS  Google Scholar 

  8. Drouet C, Carayon MT, Combes C, Rey C. Surface enrichment of biomimetic apatites with biologically-active ions Mg2+ and Sr2+: a preamble to the activation of bone repair materials. Mater Sci Eng. 2008;28:1544–50.

    Article  CAS  Google Scholar 

  9. Combes C, Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010;6:3362–78.

    Article  CAS  Google Scholar 

  10. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  11. Ardhaoui K, Coulet MV, Ben Chérifa A, Carpena J, Rogez J, Jemal M. Standard enthalpy of formation of neodymium fluorbritholites. Thermochim Acta. 2006;444:190–4.

    Article  CAS  Google Scholar 

  12. Ardhaoui K, Rogez J, Ben Chérifa A, Jemal M, Satre P. Standard enthalpy of formation of lanthanum oxybritholites. J Therm Anal Calorim. 2006;86:553–9.

    Article  CAS  Google Scholar 

  13. Boughzala K, Ben Salem E, Ben Chérifa A, Gaudin E, Bouzouita K. Synthesis and characterization of strontium-lanthanum apatites. Mater Res Bull. 2007;42:1221–9.

    Article  CAS  Google Scholar 

  14. Ntahomvukiye I, Khattech I, Jemal M. Synthèse, characterisation et thermochimie d’apatites calco-plombeuses fluorées Ca(10-x)Pbx(PO4)6F2, 0 ≤ x ≤ 10. Ann Chim Sci Mater. 1997;22:435–46.

    CAS  Google Scholar 

  15. Ben Cherifa A, Jemal M. Enthalpie de formation et de mélange de phosphoapatites calco-cadmiées chlorées. J Therm Anal Calorim. 2002;68:1035–44.

    Article  CAS  Google Scholar 

  16. Bonel G. Contribution à l’étude de la carbonatation des apatites II. Synthèse et étude des propriétés physico-chimiques des apatites carbonatées de type B. III. Synthèse et étude des propriétés physico-chimiques d’apatites carbonatées dans deux types de sites. Evolution des spectres infrarouge en fonction de la composition des apatites. Ann Chim Sci Mater. 1972;7:127–44.

    CAS  Google Scholar 

  17. Roux P, Bonel G. Sur la préparation de l’apatite carbonatée de type A à haute température par évolution, sous pression de gaz carbonique. Ann Chim Sci Mater. 1977;2:159–65.

    CAS  Google Scholar 

  18. Khattech I. Synthèse, caractérisation et étude thermochimique de phosphates à base de métaux alcalino-terreux, Thesis, Tunis El Manar University; 1996.

  19. Bruker AXS TOPAS version 4.2.

  20. Bel Hadj Yahia F, Jemal M. Synthesis, structural analysis and thermochemistry of B-type carbonate apatites. Thermochim Acta. 2010;505:22–32.

    Article  Google Scholar 

  21. Ben Chérifa A, Jemal M. Sur la réaction de dissolution des phosphates dans les acides: Enthalpie de dissolution du phosphate tricacique β dans l’acide nitrique. Ann Chim Sci Mater Fr. 1985;10:543–8.

    Google Scholar 

  22. Hill JO, Öjelund G, Wadsö I. Thermochemical results for “tris” as a test substance in solution calorimetry. J Chem Thermodyn. 1969;1:111–6.

    Article  CAS  Google Scholar 

  23. Camlong-Viot C, Morgant G. Évaluations comparatives: Présentation de deux outils statistiques. Two statistical methods of comparison. Immunoanal Biol Spéc. 2005;20:320–8.

    Google Scholar 

  24. Sands DE. Weighting factors in least squares. J Chem Educ. 1974;51(7):473–4.

    Article  CAS  Google Scholar 

  25. Pattengill MD, Sands DE. Statistical significance of linear last-squares parameters. J Chem Educ. 1979;56(4):244–7.

    Article  CAS  Google Scholar 

  26. Ardhaoui K. Synthèse, caractérisation et détermination de grandeurs thermochimiques de britholites à base de lanthane et de néodyme, Thesis, Tunis El Manar University; 2006.

  27. Khattech I, Jemal M. Thermochemistry of phosphate products. Part I: standard enthalpy of formation of tristrontium phosphate and strontium chlorapatite. Thermochim Acta. 1997;298:17–21.

    Article  CAS  Google Scholar 

  28. Khattech I, Lacout JL, Jemal M. Synthèse et thermochimie de phosphates d’alcalino-terreux. II. Enthalpie standard de formation et de mélange dans les solutions solides d’hydroxyapatites calco-strontiques. Ann Chim Fr. 1996;21:259–70.

    CAS  Google Scholar 

  29. Lide DR, editor. Handbook of chemistry and physics. 87th ed. Boca Raton: CRC Press; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bechrifa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jebri, S., Boughzala, H., Bechrifa, A. et al. Structural analysis and thermochemistry of “A” type phosphostrontium carbonate hydroxyapatites. J Therm Anal Calorim 107, 963–972 (2012). https://doi.org/10.1007/s10973-011-1598-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1598-2

Keywords

Navigation