Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 3, pp 963–972 | Cite as

Structural analysis and thermochemistry of “A” type phosphostrontium carbonate hydroxyapatites

  • Sonia Jebri
  • Habib Boughzala
  • Ali Bechrifa
  • Mohamed Jemal
Article

Abstract

“A” type phosphostrontium carbonate hydroxyapatites, having the general formula Sr10(PO4)6(OH)(2−2x)(CO3) x with 0 ≤ x ≤ 1, were synthesised by solid gas reaction at high temperature. The samples were characterised by X-ray diffraction and infrared spectroscopy. Analysis of carbonate was achieved by coulometry and Rietveld refinement of the structure. Using an isoperibol calorimeter, the heat of solution of these products was measured at 298 K in 9 wt% nitric acid solution. Thermochemical cycle was proposed and complementary experiences were performed to reach the standard enthalpies of formation of these compounds. The results showed a decrease of the enthalpy of formation with the amount of carbonate introduced in the lattice, suggesting an increase of stability due to this kind of substitution.

Keywords

Carbonate apatites Isoperibol calorimeter Heat of solution Formation enthalpies 

References

  1. 1.
    El Asri S, Laghzizil A, Alaoui A, Saoiabi A, M’Hamdi R, El Abbassi K, Hakam A. Structure and thermal behaviors of Moroccan phosphate rock (bengurir). J Therm Anal Calorim. 2009;95:15–9.CrossRefGoogle Scholar
  2. 2.
    Mothé CG, Mothé Filho HF, Lima RJC. Thermal study of the fossilization processes of the extinct fishes in araripe geopark. J Therm Anal Calorim. 2008;93:101–4.CrossRefGoogle Scholar
  3. 3.
    Achchar M, Lamonier C, Ezzamarty A, Lakhdar M, Leglise J, Payen E. New apatite-based supports prepared by industrial phosphoric acid for HDS catalyst synthesis. C R Chim. 2009;12:677–82.CrossRefGoogle Scholar
  4. 4.
    Reisfeld R, Gaftb M, Boulonc G, Panczer C, Jsrgensend CK. Laser-induced luminescence of rare-earth elements in natural fluor-apatites. J Lumin. 1996;69:343–53.CrossRefGoogle Scholar
  5. 5.
    Mahabole MP, Aiyer RC, Ramakrishna CV, Sreedhar B, Khairnar RS. Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull Mater Sci. 2005;28(6):535–45.CrossRefGoogle Scholar
  6. 6.
    Bonhomme C, Beaudet-Savignat S, Chartier T, Maître A, Sauvet A, Soulestin B. Sintering kinetics and oxide ion conduction in Sr-doped apatite-type lanthanum silicates, La9Sr1Si6O26.5. Solid State Ionics. 2009;180:1593–8.CrossRefGoogle Scholar
  7. 7.
    Mezahi FZ, Oudadesse H, Harabi A, Lucas-Girot A, Le Gal Y, Chaair H, Cathelineau G. Dissolution kinetic and structural behaviour of natural hydroxyapatite vs. thermal treatment. Comparison to synthetic hydroxyapatite. J Therm Anal Calorim. 2009;95:21–9.CrossRefGoogle Scholar
  8. 8.
    Drouet C, Carayon MT, Combes C, Rey C. Surface enrichment of biomimetic apatites with biologically-active ions Mg2+ and Sr2+: a preamble to the activation of bone repair materials. Mater Sci Eng. 2008;28:1544–50.CrossRefGoogle Scholar
  9. 9.
    Combes C, Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010;6:3362–78.CrossRefGoogle Scholar
  10. 10.
    Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.CrossRefGoogle Scholar
  11. 11.
    Ardhaoui K, Coulet MV, Ben Chérifa A, Carpena J, Rogez J, Jemal M. Standard enthalpy of formation of neodymium fluorbritholites. Thermochim Acta. 2006;444:190–4.CrossRefGoogle Scholar
  12. 12.
    Ardhaoui K, Rogez J, Ben Chérifa A, Jemal M, Satre P. Standard enthalpy of formation of lanthanum oxybritholites. J Therm Anal Calorim. 2006;86:553–9.CrossRefGoogle Scholar
  13. 13.
    Boughzala K, Ben Salem E, Ben Chérifa A, Gaudin E, Bouzouita K. Synthesis and characterization of strontium-lanthanum apatites. Mater Res Bull. 2007;42:1221–9.CrossRefGoogle Scholar
  14. 14.
    Ntahomvukiye I, Khattech I, Jemal M. Synthèse, characterisation et thermochimie d’apatites calco-plombeuses fluorées Ca(10-x)Pbx(PO4)6F2, 0 ≤ x ≤ 10. Ann Chim Sci Mater. 1997;22:435–46.Google Scholar
  15. 15.
    Ben Cherifa A, Jemal M. Enthalpie de formation et de mélange de phosphoapatites calco-cadmiées chlorées. J Therm Anal Calorim. 2002;68:1035–44.CrossRefGoogle Scholar
  16. 16.
    Bonel G. Contribution à l’étude de la carbonatation des apatites II. Synthèse et étude des propriétés physico-chimiques des apatites carbonatées de type B. III. Synthèse et étude des propriétés physico-chimiques d’apatites carbonatées dans deux types de sites. Evolution des spectres infrarouge en fonction de la composition des apatites. Ann Chim Sci Mater. 1972;7:127–44.Google Scholar
  17. 17.
    Roux P, Bonel G. Sur la préparation de l’apatite carbonatée de type A à haute température par évolution, sous pression de gaz carbonique. Ann Chim Sci Mater. 1977;2:159–65.Google Scholar
  18. 18.
    Khattech I. Synthèse, caractérisation et étude thermochimique de phosphates à base de métaux alcalino-terreux, Thesis, Tunis El Manar University; 1996.Google Scholar
  19. 19.
    Bruker AXS TOPAS version 4.2.Google Scholar
  20. 20.
    Bel Hadj Yahia F, Jemal M. Synthesis, structural analysis and thermochemistry of B-type carbonate apatites. Thermochim Acta. 2010;505:22–32.CrossRefGoogle Scholar
  21. 21.
    Ben Chérifa A, Jemal M. Sur la réaction de dissolution des phosphates dans les acides: Enthalpie de dissolution du phosphate tricacique β dans l’acide nitrique. Ann Chim Sci Mater Fr. 1985;10:543–8.Google Scholar
  22. 22.
    Hill JO, Öjelund G, Wadsö I. Thermochemical results for “tris” as a test substance in solution calorimetry. J Chem Thermodyn. 1969;1:111–6.CrossRefGoogle Scholar
  23. 23.
    Camlong-Viot C, Morgant G. Évaluations comparatives: Présentation de deux outils statistiques. Two statistical methods of comparison. Immunoanal Biol Spéc. 2005;20:320–8.Google Scholar
  24. 24.
    Sands DE. Weighting factors in least squares. J Chem Educ. 1974;51(7):473–4.CrossRefGoogle Scholar
  25. 25.
    Pattengill MD, Sands DE. Statistical significance of linear last-squares parameters. J Chem Educ. 1979;56(4):244–7.CrossRefGoogle Scholar
  26. 26.
    Ardhaoui K. Synthèse, caractérisation et détermination de grandeurs thermochimiques de britholites à base de lanthane et de néodyme, Thesis, Tunis El Manar University; 2006.Google Scholar
  27. 27.
    Khattech I, Jemal M. Thermochemistry of phosphate products. Part I: standard enthalpy of formation of tristrontium phosphate and strontium chlorapatite. Thermochim Acta. 1997;298:17–21.CrossRefGoogle Scholar
  28. 28.
    Khattech I, Lacout JL, Jemal M. Synthèse et thermochimie de phosphates d’alcalino-terreux. II. Enthalpie standard de formation et de mélange dans les solutions solides d’hydroxyapatites calco-strontiques. Ann Chim Fr. 1996;21:259–70.Google Scholar
  29. 29.
    Lide DR, editor. Handbook of chemistry and physics. 87th ed. Boca Raton: CRC Press; 2006.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Sonia Jebri
    • 1
  • Habib Boughzala
    • 2
  • Ali Bechrifa
    • 1
  • Mohamed Jemal
    • 1
  1. 1.Faculty of Science, Chemistry Department, Applied Thermodynamic LaboratoryTunis El Manar UniversityTunisTunisia
  2. 2.Faculty of Science, Chemistry Department, Laboratory of Crystallochemistry and materialsTunis El Manar UniversityTunisTunisia

Personalised recommendations