Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 1, pp 65–68 | Cite as

Study of size-dependent glass transition and Kauzmann temperature of titanium dioxide nanoparticles

  • Shree Mishra
  • Prafulla K. Jha
  • Arun Pratap


In this article, we have studied the size effect on glass transition and Kauzmann temperature of spherical TiO2 nanoparticles using Arrhenius relation and Lindemann’s criteria under their dynamic limit. The melting point of nanoparticles decreases with decrease in size of the nanoparticles. The glass transition temperature and Kauzmann temperature are analyzed through the size effect on the melting temperature. The glass transition and Kauzmann temperatures decrease with the decrease in size of TiO2 nanoparticles.


Nanoparticles Glass transition temperature Kauzmann temperature Melting temperature 



The authors acknowledge financial support from Department of Science and Technology, New Delhi and University Grants Commission, New Delhi.


  1. 1.
    Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100:1–11.CrossRefGoogle Scholar
  2. 2.
    Rout CS, Raju AR, Govindraj A, Rao CNR. Hydrogen sensors based on ZnO nanoparticles. Solid State Commun. 2006;138:136–8.CrossRefGoogle Scholar
  3. 3.
    Wang X, Song J, Liu J, Wang ZL. Direct-current nanogenerator driven by ultrasonic waves. Science. 2007;316:102–5.CrossRefGoogle Scholar
  4. 4.
    Martinez CJ, Hockey B, Montgomery CB, Semancik S. Porous tin oxide nanostructured microspheres for sensor applications. Langmuir. 2005;21:7937–44.CrossRefGoogle Scholar
  5. 5.
    Tjong SC, Chen H. Nanocrystalline materials and coatings. Mater Sci Eng R. 2004;45:1–8.CrossRefGoogle Scholar
  6. 6.
    Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556.CrossRefGoogle Scholar
  7. 7.
    Timp G, editor. Nanotechnology. New York: AIP Press, Springer; 1999.Google Scholar
  8. 8.
    Hoang VV. The glass transition and thermodynamics of liquid and amorphous TiO2 nanoparticles. Nanotechnology. 2008;19:105706–19.CrossRefGoogle Scholar
  9. 9.
    Jiang Q, Yang CC. Size effect on the phase stability of nanostructures. Curr Nanosci. 2008;4:179–200.CrossRefGoogle Scholar
  10. 10.
    Shi FG. Size dependent thermal vibrations and melting in nanocrystals. J Mater Res. 1994;9:1307–13.CrossRefGoogle Scholar
  11. 11.
    Mishra S, Gupta SK, Jha PK, Pratap A. Study of dimension dependent diffusion coefficient of titanium dioxide nanoparticles. Mater Chem Phys. 2010;123:791–4.CrossRefGoogle Scholar
  12. 12.
    Dhurandhar H, Lad K, Pratap A, Dey GK. Gibbs free energy difference in bulk metallic glass forming alloys. Defect Diffus Forum. 2008;279:91–6.CrossRefGoogle Scholar
  13. 13.
    Ao ZM, Zheng WT, Jiang Q. Size effects on the Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles. Nanotechnology. 2007;18:255706–12.CrossRefGoogle Scholar
  14. 14.
    Guisbiers G, Buchaillot L. Size and shape effects on creep and diffusion at the nanoscale. Nanotechnology. 2008;19:435701–7.CrossRefGoogle Scholar
  15. 15.
    Gupta SK, Talati M, Jha PK. Shape and size dependent melting point temperature of nanoparticles. Mater Sci Forum. 2008;570:132–7.CrossRefGoogle Scholar
  16. 16.
    Hoang VV. Pressure-induced structural transition in amorphous TiO2 nanoparticles and in the bulk via molecular dynamics simulation. J Phys D Appl Phys. 2007;40:7454–61.CrossRefGoogle Scholar
  17. 17.
    Qi WH. Size effect on melting temperature of nanosolids. Phys B. 2005;368:46–50.CrossRefGoogle Scholar
  18. 18.
    Turnbull D, Fisher JC. Rate of nucleation in condensed systems. J Chem Phys. 1949;17:71–3.CrossRefGoogle Scholar
  19. 19.
    Li G, Boerio-Goater J, Woodfield B, Fand Li L. Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals. Appl Phys Lett. 2004;85:2059–63.CrossRefGoogle Scholar
  20. 20.
    Cooke DJ, Parker SC, Osguthorpe DJ. Calculating the vibrational thermodynamic properties of bulk oxides using lattice dynamics and molecular dynamics. Phys Rev B. 2003;67:134306–9.CrossRefGoogle Scholar
  21. 21.
    Smith JS, Stevens R, Liu S, Li G, Navrotsky A, Boerio-Goates J, Woodfield BF. Heat capacities and thermodynamic functions of TiO2 anatase and rutile: analysis of phase stability. Am Miner. 2009;94:236–43.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Department of PhysicsBhavnagar UniversityBhavnagarIndia
  2. 2.Faculty of Technology and Engineering, Applied Physics DepartmentThe M. S. University of BarodaVadodaraIndia

Personalised recommendations