Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 3, pp 1143–1146 | Cite as

Thermal Stability of newberyite Mg(PO3OH)·3H2O

A cave mineral from Skipton Lava Tubes, Victoria, Australia
  • Ray L. Frost
  • Sara J. Palmer
  • Ross E. Pogson
Article

Abstract

The mineral newberyite Mg(PO3OH)·3H2O is a mineral that has been found in caves such as the Skipton Lava Tubes (SW of Ballarat, Victoria, Australia), Moorba Cave, (Jurien Bay, Western Australia) and in the Petrogale Cave (Madura, Eucla, Western Australia). Since these minerals contain water, the minerals lend themselves to thermal analysis. The mineral newberyite is found to decompose at 145 °C with a water loss of 31.96%, a result which is very close to the theoretical value. The result shows that the mineral is not stable in caves where the temperature exceeds this value. The implication of this result rests with the removal of kidney stones, which have the same composition as newberyite. Point heating focussing on the kidney stone results in the destruction of the kidney stone.

Keywords

Newberyite Thermal analysis ‘Cave’ mineral Struvite Hannayite Stercorite Mundrabillaite 

Notes

Acknowledgements

The financial and infra-structure support of the Queensland University of Technology, Chemistry discipline is gratefully acknowledged. The Australian Research Council (ARC) is thanked for funding the instrumentation.

References

  1. 1.
    Bridge PJ. Archerite, (K, NH4)H2PO4, a new mineral from Madura, Western Australia. Mineral Mag. 1977;41:33–5.CrossRefGoogle Scholar
  2. 2.
    Freund A, Eggert G, Kutzke H, Barbier B. On the occurrence of magnesium phosphates on ivory. Stud Conserv. 2002;47:155–60.CrossRefGoogle Scholar
  3. 3.
    Bowell RJ, Warren A, Redmond I. Formation of cave salts and utilization by elephants in the Mount Elgon region Kenya. Geological Society Special Publication No. 113. London: Geological Society; 1996. p 63–79.Google Scholar
  4. 4.
    Onac BP, Hess JW, White WB. The relationship between the mineral composition of speleothems and mineralization of breccia pipes: evidence from corkscrew cave, Arizona, USA. Can Mineral. 2007;45:1177–88.CrossRefGoogle Scholar
  5. 5.
    White WB. Cave minerals and speleothems. In: Ford DT, Cullingford CHD, editors. The science of speleology: London, Academic Press; 1976. p 267–327.Google Scholar
  6. 6.
    Bridge PJ. Guano minerals from Murra-el-elevyn Cave, Western Australia. Mineral Mag. 1973;39:467–9.CrossRefGoogle Scholar
  7. 7.
    Bridge PJ, Clark RM. Mundrabillaite—a new cave mineral from Western Australia. Mineral Mag. 1983;47:80–1.CrossRefGoogle Scholar
  8. 8.
    Bridge PJ, Robinson BW. Niahite—a new mineral from Malaysia. Mineral Mag. 1983;47:79–80.CrossRefGoogle Scholar
  9. 9.
    Schneider HJ, Anke M. Mineral content of the compensatorily hypertrophied kidney in the growing animal. Urol Int. 1969;24:300–9.CrossRefGoogle Scholar
  10. 10.
    Schneider HJ, Klotz L, Horn G. Preparation of a citrate granulate and its use in the therapy of urolithiasis. Z Urol Nephrol. 1969;62:351–5.Google Scholar
  11. 11.
    Schneider HJ. Calcium, magnesium, phosphorus, potassium and sodium excretion in urine in patients with kidney stones and their relation to the kind of stone. Z Urol Nephrol. 1969;62:123–34.Google Scholar
  12. 12.
    Schneider HJ, Horn G. Drinking cure with sea water. A contribution on magnesium therapy. Z Urol Nephrol. 1968;61:753–60.Google Scholar
  13. 13.
    Schneider HJ, Anke M. Changes in the magnesium content of hair, urine and blood plasma following oral magnesium administration in humans and the importance of these findings regarding the therapy of oxalate urolithiasis. Z Urol Nephrol. 1968;61:361–5.Google Scholar
  14. 14.
    Lonsdale K, Sutor DJ. Newberyite in ancient and modern urinary calculi: identification and space group. Science. 1966;154:1353–4.CrossRefGoogle Scholar
  15. 15.
    Cheng H, Yang J, Frost RL, Liu Q, Zhang Z. Thermal analysis and Infrared emission spectroscopic study of kaolinite-potassium acetate intercalate complex. J Therm Anal Calorim. 2011;103:507–13.CrossRefGoogle Scholar
  16. 16.
    Bakon KH, Palmer SJ, Frost RL. Thermal analysis of synthetic reevesite and cobalt substituted reevesite (Ni, Co)6Fe2(OH)16(CO3)·4H2O. J Therm Anal Calorim. 2010;100:125–31.CrossRefGoogle Scholar
  17. 17.
    Cheng H, Liu Q, Yang J, Frost RL. Thermogravimetric analysis of selected coal-bearing strata kaolinite. Thermochim Acta. 2010;507–508:84–90.CrossRefGoogle Scholar
  18. 18.
    Cheng H, Liu Q, Yang J, Zhang J, Frost RL. Thermal analysis and infrared emission spectroscopic study of halloysite-potassium acetate intercalation compound. Thermochim Acta. 2010;511:124–8.CrossRefGoogle Scholar
  19. 19.
    Cheng H, Liu Q, Yang J, Zhang Q, Frost RL. Thermal behavior and decomposition of kaolinite-potassium acetate intercalation composite. Thermochim Acta. 2010;503–504:16–20.CrossRefGoogle Scholar
  20. 20.
    Frost RL, Palmer SJ, Grand LM. Synthesis and thermal analysis of indium-based hydrotalcites of formula Mg6In2(CO3)(OH)16·4H2O. J Therm Anal Calorim. 2010;101:859–63.CrossRefGoogle Scholar
  21. 21.
    Frost RL, Palmer SJ, Kristof J, Horvath E. Dynamic and controlled rate thermal analysis of halotrichite. J Therm Anal Calorim. 2010;99:501–7.CrossRefGoogle Scholar
  22. 22.
    Frost RL, Palmer SJ, Kristof J, Horvath E. Thermoanalytical studies of silver and lead jarosites and their solid solutions. J Therm Anal Calorim. 2010;101:73–9.CrossRefGoogle Scholar
  23. 23.
    Grand LM, Palmer SJ, Frost RL. Synthesis and thermal stability of hydrotalcites containing manganese. J Therm Anal Calorim. 2010;100:981–5.CrossRefGoogle Scholar
  24. 24.
    Grand LM, Palmer SJ, Frost RL. Synthesis and thermal stability of hydrotalcites based upon gallium. J Therm Anal Calorim. 2010;101:195–8.CrossRefGoogle Scholar
  25. 25.
    Palmer SJ, Frost RL. Thermal decomposition of Bayer precipitates formed at varying temperatures. J Therm Anal Calorim. 2010;100:27–32.CrossRefGoogle Scholar
  26. 26.
    Yang J, Frost RL, Martens WN. Thermogravimetric analysis and hot-stage Raman spectroscopy of cubic indium hydroxide. J Therm Anal Calorim. 2010;100:109–16.CrossRefGoogle Scholar
  27. 27.
    Anthony JW, Bideaux RA, Bladh KW. Handbook of mineralogy. Vol. IV. Arsenates, phosphates, vanadates. Tucson, AZ: Mineral Data Publishing; 2000.Google Scholar
  28. 28.
    Platford RF. Thermodynamics of system water-disodium hydrogen phosphate-diammonium hydrogen phosphate at 25°C. J Chem Eng Data. 1974;19:166–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Ray L. Frost
    • 1
  • Sara J. Palmer
    • 1
  • Ross E. Pogson
    • 2
  1. 1.Chemistry Discipline, Faculty of Science and TechnologyQueensland University of TechnologyBrisbaneAustralia
  2. 2.Mineralogy and Petrology Section, Australian MuseumSydneyAustralia

Personalised recommendations