Journal of Thermal Analysis and Calorimetry

, Volume 105, Issue 2, pp 529–534 | Cite as

Comparative study of HMX and CL-20

Thermal analysis, combustion and interaction with aluminium
  • O. Ordzhonikidze
  • A. Pivkina
  • Yu. Frolov
  • N. Muravyev
  • K. Monogarov


This study deals with a well-known monocyclic nitramine HMX and a relatively new polycyclic strained-cage nitramine CL-20. Experimental data on the powder morphology, simultaneous thermal analysis (STA) and burning rate of binary formulations Al/HMX and Al/CL-20 are presented. Kinetic modelling for HMX and CL-20 are considered based on analysis of STA data obtained for low heating rates. The processing of STA data by the Kissinger method was shown to need to be supplemented with the construction of a thermokinetic model. The thermal decomposition of HMX is reliably described by the reaction of the first order with the autocatalysis. Obtained kinetic parameters of the HMX thermal decomposition correlate with literature-known data on kinetics of the lead stage of HMX combustion. Two types of aluminium powder, i.e. micron-sized and ultrafine, are used to investigate the interaction with both nitramines. Thermal analysis revealed the higher Al oxidation ability of the solid compounds produced at CL-20 thermolysis, than that one of HMX. Burning rate experiments show the differences in the combustion parameters between CL-20- and HMX-based formulations, specifically along with the burn rate level increase for CL-20 monopropellant as compared to HMX one, the pressure exponent and effect of the aluminium particle size variation are also distinct. Results are analyzed and compared to available literature data.


HMX CL-20 Thermokinetic modelling Thermal analysis 



Financial support of the Russian Foundation of Basic Research (RFFI grant #10-03-00317a) is gratefully acknowledged.


  1. 1.
    Nielsen AT. Synthesis of polynitropolyaza caged nitramines chemical propulsion information agency; 1987, Publication no. 473.Google Scholar
  2. 2.
    Lobbecke S, Bohn MA, Pfeil A, et al. Thermal behavior and stability of HNIW (CL 20). In: Proceedings of the 29th International Annual Conferrence on ICT, Karlsruhe; 1998. p. 145/1–145/15.Google Scholar
  3. 3.
    Kimura J, Kubota N. Thermal decomposition process of HMX. Propell Expl Pyrotech. 1980;5(1):1–8.CrossRefGoogle Scholar
  4. 4.
    Brill TB, Gongwer PE, Williams GK. Thermal decomposition of energetic materials 66. Kinetic compensation effects in HMX, RDX and NTO. J Phys Chem. 1994;98(47):12242–7.CrossRefGoogle Scholar
  5. 5.
    Constable FH. The mechanism of catalytic decomposition. Proc R Soc Lond. 1925;108:355–78.CrossRefGoogle Scholar
  6. 6.
    Gallagher PK, Johnson DW. Kinetics of the thermal decomposition of CaCo3 in Co2 and some observations on the kinetic compensation effect. Thermochim Acta. 1976;14:255–61.CrossRefGoogle Scholar
  7. 7.
    Dollimore D, Rodgers PF. The appearance of a compensation effect in the thermal decomposition of manganese(II) carbonates, prepared in the presence of other metal ions. Thermochim Acta. 1979;30(1):273–80.CrossRefGoogle Scholar
  8. 8.
    Leffler JE, Grunwald E. Rates and equilibria of organic reactions. New York: Wiley; 1963.Google Scholar
  9. 9.
    Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.CrossRefGoogle Scholar
  10. 10.
    Muravyev N, Frolov Yu, Ordzhonikidze O, et al. Particle size and mixing technology influence on combustion of HMX/Al compositions. In: Proceedings of the 36th International Pyrotechnic Seminar, Rotterdam; 2009. p. 43.Google Scholar
  11. 11.
    Bulusu S, Behrens RA. Review of the thermal decomposition pathways in RDX, HMX and other closely related cyclic nitramines. Def Sci J. 1996;46(5):347–60.Google Scholar
  12. 12.
    Geetha M, Nair UR, Sarwade DB, et al. Studies on CL-20: the most powerful high energy material. J Therm Anal Calorim. 2003;73:913–22.CrossRefGoogle Scholar
  13. 13.
    Melius SF. Thermochemical modeling: II. Application to ignition and combustion of energetic materials. In: Bulusu S, editor. Chemistry and physics of energetic materials. Boston: Kluwer; 1990. p. 51–78.Google Scholar
  14. 14.
    Shaw R, Walker FE. Estimated kinetics and thermochemistry of some initial unimolecular reactions in the thermal decomposition of l,3,5,7-Tetranitro-l,3,5,7-tetraazacyclooctane in the gas phase. J Phys Chem. 1977;81:2572–6.CrossRefGoogle Scholar
  15. 15.
    Kissinger HE. Reaction kinetics in differential thermal analysis. J Anal Chem. 1957;29(11):1702–6.CrossRefGoogle Scholar
  16. 16.
    Pinheiro GFM, Lourenco VL, Iha K. Influence of the heating rate in the thermal decomposition of HMX. J Therm Anal Calorim. 2002;67:445–52.CrossRefGoogle Scholar
  17. 17.
    Brill TB, Karpowicz RJ. Solid phase transition kinetics: the role of intermolecular forces in the condensed-phase decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J Phys Chem. 1982;86(21):4260–5.CrossRefGoogle Scholar
  18. 18.
    Tarver CM, Tran TD. Thermal decomposition models for HMX-based plastic bonded explosives. Combust Flame. 2004;137(1–2):50–62.CrossRefGoogle Scholar
  19. 19.
    Korsounskii BL, Nedelko VV, Chukanov NV, et al. Kinetics of thermal decomposition of hexanitrohexazaisowurtzitane. Russ Chem Bull. 2000;49(5):812–8.CrossRefGoogle Scholar
  20. 20.
    Sinditskii VP, Egorshev VY, Serushkin VV, et al. Evaluation of decomposition kinetics of energetic materials in the combustion wave. Thermochim Acta. 2009;496(1–2):1–12.CrossRefGoogle Scholar
  21. 21.
    Zeldovich YB. Theory of combustion of propellants and explosives. Zh Eksp Teor Fiz. 1942;12(11–12):498–524.Google Scholar
  22. 22.
    Sinditskii VP, Egorshev VY, Berezin MV, et al. Study on combustion of energetic cyclic nitramines. Zh Khim Fiz. 2003;22(7):64–9.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • O. Ordzhonikidze
    • 1
  • A. Pivkina
    • 1
  • Yu. Frolov
    • 1
  • N. Muravyev
    • 1
  • K. Monogarov
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of ScienceMoscowRussia

Personalised recommendations