Journal of Thermal Analysis and Calorimetry

, Volume 106, Issue 2, pp 513–517 | Cite as

Influence of Cu(II) in the SrSnO3 crystallization

  • D. Melo
  • R. M. M. Marinho
  • F. T. G. Vieira
  • S. J. G. Lima
  • E. Longo
  • A. G. Souza
  • A. S. Maia
  • I. M. G. Santos


Perovskite type oxides have been intensively studied due to their interesting optical, electrical, and catalytic properties. Among perovskites the alkaline earth stannates stand out, being strontium stannates (SrSnO3) the most important material in ceramic technology among them due to their wide application as dielectric component. SrSnO3 has also been applied as stable capacitor and humidity sensor. In the present work, SrSnO3:Cu was synthesized by polymeric precursor method and heat treated at 700, 800, and 900 °C for 4 h. After that, the material was characterized by thermal analysis (TG/DTA), X-ray diffraction (XRD), infrared spectroscopy, and UV–vis spectroscopy. Results indicated three thermal decomposition steps and confirmed the presence of strontium carbonate and Cu2+ reduction to Cu+ at higher dopant amounts. XRD patterns indicated that the perovskite crystallization started at 700 °C with strontiatite (SrCO3) and cassiterite (SnO2) as intermediate phases, disappearing at higher temperatures. The amount of secondary phase was reduced with the increase in the Cu concentration.


Strontium stannate Copper TG/DTA Polymeric precursor method and perovskite 



The authors acknowledge Coordination of Improvement of Higher Education Personnel (CAPES), National Institutes of Science and Technology/National Council for Scientific and Technological Development (INCT/CNPq/MCT), Research and Projects Financing (FINEP/MCT) and Petrobras for the financial support of this work.


  1. 1.
    Silva WJ, Melo DMA, Soares SFCX, Pimentel PM, Nascimento RM, Martinelli AE, Rabelo AA. Síntese de manganita de lantânio com substituição parcial do La por Sr pelo método citrato. Matéria. 2007;12:65–71.Google Scholar
  2. 2.
    He H, Liu M, Daí H, Qiu W, Zi X. An investigation of NO/CO reaction over perovskite-type oxide La0.8Ce0.2B0.4Mn0.6O3 (B = Cu or Ag) catalysts synthesized by reverse microemulsion. Catal Today. 2007;126:290–5.CrossRefGoogle Scholar
  3. 3.
    Teraoka Y, Nii H, Kagawa S, Jansson K, Nygren M. Influence of the simultaneous substitution of Cu and Ru in the Perovskite-type (La, Sr)MO3 (M = Al, Mn, Fe, Co) on the catalytic activity for CO oxidation and CO–NO reactions. Appl Catal A. 2000;194:35–41.CrossRefGoogle Scholar
  4. 4.
    Tien-Thao N, Alamdari H, Kaliaguine S, Zahedi-Niaki MH. LaCo1−xCuxO3−δ perovskite catalysts for higher alcohol synthesis. Appl Catal A. 2006;311:204–12.CrossRefGoogle Scholar
  5. 5.
    Hadjarab B, Bouguelia A, Trari M. Synthesis, physical and photo electrochemical characterization of La-doped SrSnO3. J Phys Chem Solids. 2007;68:1491–9.CrossRefGoogle Scholar
  6. 6.
    Nascimento MR, Santos MRC, Lima SJG, Pinheiro CD, Espinosa JWM, Longo E, Souza AG, Santos IMG. Influência da adição de níquel na síntese do SrSnO3. Cerâmica. 2008;54:120–8.CrossRefGoogle Scholar
  7. 7.
    Souza SC, Alves MCF, Oliveira ALM, Longo E, Vieira FTG, Gomes RM, Soledade LEB, Souza AG, Santos IMG. SrSnO3:Nd obtained by the polymeric precursor method. J Therm Anal Calorim. 2009;97:185–90.CrossRefGoogle Scholar
  8. 8.
    Zhang R, Villanueva A, Alamdari H, Kaliaguine S. Catalytic reduction of NO by propene over LaCo1−xCuxO3 perovskites synthesized by reactive grinding. Appl Catal B. 2006;64:220–33.CrossRefGoogle Scholar
  9. 9.
    Melo DS, Santos MRC, Santos IMG, Soledade LEB, Bernardi MIB, Longo E, Souza AG. Thermal and structural investigation of SnO2:Sb obtained by the polymeric precursor method. J Therm Anal Calorim. 2007;87:697–701.CrossRefGoogle Scholar
  10. 10.
    Santos SCL, Capistrano BJS, Vieira FTG, Santos MRC, Lima SJG, Longo E, Paskocimas CA, Souza AG, Soledade LEB, Santos IMG. Structural and thermal characterization of Zn2−xCoxTiO4. J Therm Anal Calorim. 2009;97:137–41.CrossRefGoogle Scholar
  11. 11.
    Alves MCF, Souza SC, Silva MRS, Paris EC, Lima SJG, Gomes RM, Longo E, Souza AG, Santos IMG. Thermal analysis applied in the crystallization study of SrSnO3. J Therm Anal Calorim. 2009;97:179–83.CrossRefGoogle Scholar
  12. 12.
    Alves MCF, Nascimento MR, Lima SJG, Pizani PS, Espinosa JWM, Longo E, Soledade LEB, Souza AG, Santos IMG. Influence of synthesis conditions on carbonate entrapment in perovskite SrSnO3. Mater Lett. 2009;63:118–20.CrossRefGoogle Scholar
  13. 13.
    Perry CH, Mccarthy DJ, Rupprecht G. Dieletric dispersion of some perovskite zirconates. Phys Rev. 1965;138:1537–8.CrossRefGoogle Scholar
  14. 14.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1980. p. 232.Google Scholar
  15. 15.
    Seftel EM, Popovici E, Mertens M, Stefaniak EA, Van Grieken R, Cool P, Vansant EF. SnIV-containing layered double hydroxides as precursors for nano-sized ZnO/SnO2 photocatalysts. Appl Catal B. 2008;84:699–705.CrossRefGoogle Scholar
  16. 16.
    Zahmakiran M, Özkar S, Kodaira T, Shiomi T. A novel, simple, organic free preparation and characterization of water dispersible photoluminescent Cu2O nanocubes. Mater Lett. 2009;63:400–2.CrossRefGoogle Scholar
  17. 17.
    Qu Y, Li X, Chen G, Zhang H, Chen Y. Synthesis of Cu2O nano-whiskers by a novel wet-chemical route. Mater Lett. 2008;62:886–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • D. Melo
    • 1
  • R. M. M. Marinho
    • 1
  • F. T. G. Vieira
    • 1
  • S. J. G. Lima
    • 2
  • E. Longo
    • 3
  • A. G. Souza
    • 1
  • A. S. Maia
    • 1
  • I. M. G. Santos
    • 1
  1. 1.Laboratório de Combustíveis e Materiais - INCTMNUFPBJoão PessoaBrazil
  2. 2.LSR, Depto de Engenharia Mecânica/CTUFPBJoão PessoaBrazil
  3. 3.LIEC - CMDMC – INCTMN, Instituto de QuímicaUNESPAraraquaraBrazil

Personalised recommendations