Skip to main content
Log in

Heat capacity of methacetin in a temperature range of 6 to 300 K

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat capacity of methacetin (N-(4-methoxyphenyl)-acetamide) has been measured in the temperature range 5.8–300 K. No anomalies in the C p(T) dependence were observed. Thermodynamic functions were calculated. At 298.15 K, the values of entropy and enthalpy are equal to 243.1 J K−1 mol−1 and 36360 J mol−1, respectively. The heat capacity of methacetin in the temperature range 6–10 K is well fitted by Debye equation C p = AT 3. The thermodynamic data obtained for methacetin are compared with those for the monoclinic and orthorhombic polymorphs of paracetamol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. For a comparison, in the crystal structures of the polymorphs of paracetamol there are two-dimensional layers kept together via NH···O and OH···O hydrogen bonds (pleated in the monoclinic polymorph and flat in the orthorhombic one) [9, 10].

References

  1. Bordallo HN, Argyriou DN, Barthès M, Kalceff W, Rols S, Herwig KW, Fehr C, Juranyi F, Seydel T. Hydrogen in N-methylacetamide: positions and dynamics of the hydrogen atoms using neutron scattering. J Phys Chem B. 2007;111:7725–34.

    Article  CAS  Google Scholar 

  2. Mirzaei M, Hadipour NL. Study of hydrogen bonds in N-methylacetamide by DFT calculations of oxygen, nitrogen, and hydrogen solid-state NMR parameters. Struct Chem. 2008;19(2):225–32.

    Article  CAS  Google Scholar 

  3. Flakus HT, Michta A. Investigations of interhydrogen bond dynamical coupling effects in the polarized IR spectra of acetanilide crystals. J Phys Chem A. 2010;114(4):1688–98.

    Article  CAS  Google Scholar 

  4. An GW, Zhang H, Cheng XL, Zhuo QL, Lu YC. Electronic structure and hydrogen bond in the crystal of paracetamol drugs. Struct Chem. 2008;19(4):613–7.

    Article  CAS  Google Scholar 

  5. Binev IG, Vassileva-Boyadjieva P, Binev YI. Experimental and ab initio MO studies on the IR spectra and structure of 4-hydroxyacetanilide (paracetamol), its oxyanion and dianion. J Mol Struct. 1998;447(3):235–46.

    Article  CAS  Google Scholar 

  6. Burgina EB, Baltakhinov VP, Boldyreva EV, Shakhtschneider TP. IR spectra of paracetamol and phenacetin. 1. Theoretical and experimental studies. J. Struct Chem. 2004;45(1):64–73.

    Article  CAS  Google Scholar 

  7. Danten Y, Tassaing T, Besnard M. Density functional theory (DFT) calculations of the infrared absorption spectra of acetaminophen complexes formed with ethanol and acetone species. J Phys Chem A. 2006;110:8986–9001.

    Article  CAS  Google Scholar 

  8. Boldyreva EV, Drebushchak VA, Paukov IE, Kovalevskaya YuA, Drebushchak TN. DSC and adiabatic calorimetry study of the polymorphs of paracetamol. An old problem revisited. J Therm Anal Calorim. 2004;77:607–23.

    Article  CAS  Google Scholar 

  9. Haisa M, Kashino S, Maeda H. The orthorhombic form of p-hydroxyacetanilide. Acta Crystallogr B. 1974;30:2510–2.

    Article  Google Scholar 

  10. Haisa M, Kashino S, Kawai R, Maeda H. The monoclinic form of p-hydroxyacetanilide. Acta Crystallogr B. 1976;32:1283–5.

    Article  Google Scholar 

  11. Drebushchak TN, Boldyreva EV. Variable temperature (100–360 K) single-crystal X-ray diffraction study of the orthorhombic polymorph of paracetamol (p-hydroxyacetanilide). Z Kristallogr. 2004;219:506–12.

    Article  CAS  Google Scholar 

  12. Wilson CC. Variable temperature study of the crystal structure of paracetamol (p-hydroxyacetanilide), by single crystal neutron diffraction. Z Kristallogr. 2000;215:693–701.

    Article  CAS  Google Scholar 

  13. Boldyreva EV, Shakhtshneider TP, Ahsbahs H, Uchtmann H, Burgina EB, Baltakhinov VP. The role of hydrogen bonds in the pressure-induced structural distortion of 4-hydroxyacetanilide crystals. Polish J Chem. 2002;76:1333–46.

    CAS  Google Scholar 

  14. Boldyreva EV, Shakhtshneider TP, Vasilchenko MA, Ahsbahs H, Uchtmann H. Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressures. Acta Crystallogr B. 2000;B56:299–309.

    Article  CAS  Google Scholar 

  15. Kolesov BA, Mikhailenko MA, Boldyreva EV. Dynamics of intermolecular hydrogen bonds in the polymorphs of paracetamol in relation to crystal packing and conformational transitions: a variable-temperature polarized Raman spectroscopy study. Phys Chem Chem Phys. 2011; (submitted).

  16. Haisa M, Kashino S, Ueno T, Shinozaki N, Matsuzaki Y. The structures of N-aromatic amides: p-acetanisidide, N-2-naphthylacetamide and N-2-fluorenylacetamide. Acta Crystallogr B. 1980;36:2306–11.

    Article  Google Scholar 

  17. Paukov IE, Kovalevskaya YuA, Boldyreva EV. Low-temperature heat capacity of l- and dl-phenylglycines. J Therm Anal Calorim. 2010. doi: 10.1007/s10973-009-0665-4.

  18. Bissengaliyeva MR, Bekturganov NS, Gogol DB. Thermodynamic characteristics of a natural zinc silicate hemimorphite researches by the method of low-temperature adiabatic calorimetry and quantum chemical computation of vibrational states. J Therm Anal Calorim. 2010;101:49–58.

    Article  CAS  Google Scholar 

  19. Paukov IE, Kovalevskaya YuA, Boldyreva EV. Low-temperature thermodynamic properties of dl-cysteine. J Therm Anal Calorim. 2010;100:295–301.

    Article  CAS  Google Scholar 

  20. Paukov IE, Kovalevskaya YuA, Boldyreva EV, Drebushchak VA. Heat capacity of β-alanine in a temperature range between 6 and 300 K. J Therm Anal Calorim. 2009;98:873–6.

    Article  CAS  Google Scholar 

  21. Drebushchak VA, Kovalevskaya YuA, Paukov IE, Boldyreva EV. Low-temperature heat capacity of diglycylglycine: some summaries and forecasts for the heat capacity of amino acids and peptides. J Therm Anal Calorim. 2008;93:865–9.

    Article  CAS  Google Scholar 

  22. Paukov IE, Kovalevskaya YuA, Boldyreva EV. Low-temperature thermodynamic properties of l-cysteine. J Therm Anal Calorim. 2008;93:423–8.

    Article  CAS  Google Scholar 

  23. Paukov IE, Kovalevskaya YuA, Rahmoun NS, Geiger CA. A low-temperature heat capacity study of synthetic anhydrous Mg-cordierite (Mg2Al4Si2O18). Am Mineral. 2006;91:35–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. T. Drebushchak for X-ray characterization of the sample. The study was supported by the Integration Project 109 of the Siberian Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Boldyreva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paukov, I.E., Kovalevskaya, Y.A., Arzamastcev, A.E. et al. Heat capacity of methacetin in a temperature range of 6 to 300 K. J Therm Anal Calorim 108, 243–247 (2012). https://doi.org/10.1007/s10973-011-1505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1505-x

Keywords

Navigation