Journal of Thermal Analysis and Calorimetry

, Volume 108, Issue 1, pp 243–247 | Cite as

Heat capacity of methacetin in a temperature range of 6 to 300 K

  • Igor E. Paukov
  • Yulia A. Kovalevskaya
  • Alexei E. Arzamastcev
  • Natalia A. Pankrushina
  • Elena V. Boldyreva


Heat capacity of methacetin (N-(4-methoxyphenyl)-acetamide) has been measured in the temperature range 5.8–300 K. No anomalies in the C p(T) dependence were observed. Thermodynamic functions were calculated. At 298.15 K, the values of entropy and enthalpy are equal to 243.1 J K−1 mol−1 and 36360 J mol−1, respectively. The heat capacity of methacetin in the temperature range 6–10 K is well fitted by Debye equation C p = AT 3. The thermodynamic data obtained for methacetin are compared with those for the monoclinic and orthorhombic polymorphs of paracetamol.


Adiabatic calorimetry Methacetin Heat capacity Molecular crystals Thermodynamic functions 



The authors are grateful to Dr. T. Drebushchak for X-ray characterization of the sample. The study was supported by the Integration Project 109 of the Siberian Branch of the Russian Academy of Sciences.


  1. 1.
    Bordallo HN, Argyriou DN, Barthès M, Kalceff W, Rols S, Herwig KW, Fehr C, Juranyi F, Seydel T. Hydrogen in N-methylacetamide: positions and dynamics of the hydrogen atoms using neutron scattering. J Phys Chem B. 2007;111:7725–34.CrossRefGoogle Scholar
  2. 2.
    Mirzaei M, Hadipour NL. Study of hydrogen bonds in N-methylacetamide by DFT calculations of oxygen, nitrogen, and hydrogen solid-state NMR parameters. Struct Chem. 2008;19(2):225–32.CrossRefGoogle Scholar
  3. 3.
    Flakus HT, Michta A. Investigations of interhydrogen bond dynamical coupling effects in the polarized IR spectra of acetanilide crystals. J Phys Chem A. 2010;114(4):1688–98.CrossRefGoogle Scholar
  4. 4.
    An GW, Zhang H, Cheng XL, Zhuo QL, Lu YC. Electronic structure and hydrogen bond in the crystal of paracetamol drugs. Struct Chem. 2008;19(4):613–7.CrossRefGoogle Scholar
  5. 5.
    Binev IG, Vassileva-Boyadjieva P, Binev YI. Experimental and ab initio MO studies on the IR spectra and structure of 4-hydroxyacetanilide (paracetamol), its oxyanion and dianion. J Mol Struct. 1998;447(3):235–46.CrossRefGoogle Scholar
  6. 6.
    Burgina EB, Baltakhinov VP, Boldyreva EV, Shakhtschneider TP. IR spectra of paracetamol and phenacetin. 1. Theoretical and experimental studies. J. Struct Chem. 2004;45(1):64–73.CrossRefGoogle Scholar
  7. 7.
    Danten Y, Tassaing T, Besnard M. Density functional theory (DFT) calculations of the infrared absorption spectra of acetaminophen complexes formed with ethanol and acetone species. J Phys Chem A. 2006;110:8986–9001.CrossRefGoogle Scholar
  8. 8.
    Boldyreva EV, Drebushchak VA, Paukov IE, Kovalevskaya YuA, Drebushchak TN. DSC and adiabatic calorimetry study of the polymorphs of paracetamol. An old problem revisited. J Therm Anal Calorim. 2004;77:607–23.CrossRefGoogle Scholar
  9. 9.
    Haisa M, Kashino S, Maeda H. The orthorhombic form of p-hydroxyacetanilide. Acta Crystallogr B. 1974;30:2510–2.CrossRefGoogle Scholar
  10. 10.
    Haisa M, Kashino S, Kawai R, Maeda H. The monoclinic form of p-hydroxyacetanilide. Acta Crystallogr B. 1976;32:1283–5.CrossRefGoogle Scholar
  11. 11.
    Drebushchak TN, Boldyreva EV. Variable temperature (100–360 K) single-crystal X-ray diffraction study of the orthorhombic polymorph of paracetamol (p-hydroxyacetanilide). Z Kristallogr. 2004;219:506–12.CrossRefGoogle Scholar
  12. 12.
    Wilson CC. Variable temperature study of the crystal structure of paracetamol (p-hydroxyacetanilide), by single crystal neutron diffraction. Z Kristallogr. 2000;215:693–701.CrossRefGoogle Scholar
  13. 13.
    Boldyreva EV, Shakhtshneider TP, Ahsbahs H, Uchtmann H, Burgina EB, Baltakhinov VP. The role of hydrogen bonds in the pressure-induced structural distortion of 4-hydroxyacetanilide crystals. Polish J Chem. 2002;76:1333–46.Google Scholar
  14. 14.
    Boldyreva EV, Shakhtshneider TP, Vasilchenko MA, Ahsbahs H, Uchtmann H. Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressures. Acta Crystallogr B. 2000;B56:299–309.CrossRefGoogle Scholar
  15. 15.
    Kolesov BA, Mikhailenko MA, Boldyreva EV. Dynamics of intermolecular hydrogen bonds in the polymorphs of paracetamol in relation to crystal packing and conformational transitions: a variable-temperature polarized Raman spectroscopy study. Phys Chem Chem Phys. 2011; (submitted).Google Scholar
  16. 16.
    Haisa M, Kashino S, Ueno T, Shinozaki N, Matsuzaki Y. The structures of N-aromatic amides: p-acetanisidide, N-2-naphthylacetamide and N-2-fluorenylacetamide. Acta Crystallogr B. 1980;36:2306–11.CrossRefGoogle Scholar
  17. 17.
    Paukov IE, Kovalevskaya YuA, Boldyreva EV. Low-temperature heat capacity of l- and dl-phenylglycines. J Therm Anal Calorim. 2010. doi:  10.1007/s10973-009-0665-4.
  18. 18.
    Bissengaliyeva MR, Bekturganov NS, Gogol DB. Thermodynamic characteristics of a natural zinc silicate hemimorphite researches by the method of low-temperature adiabatic calorimetry and quantum chemical computation of vibrational states. J Therm Anal Calorim. 2010;101:49–58.CrossRefGoogle Scholar
  19. 19.
    Paukov IE, Kovalevskaya YuA, Boldyreva EV. Low-temperature thermodynamic properties of dl-cysteine. J Therm Anal Calorim. 2010;100:295–301.CrossRefGoogle Scholar
  20. 20.
    Paukov IE, Kovalevskaya YuA, Boldyreva EV, Drebushchak VA. Heat capacity of β-alanine in a temperature range between 6 and 300 K. J Therm Anal Calorim. 2009;98:873–6.CrossRefGoogle Scholar
  21. 21.
    Drebushchak VA, Kovalevskaya YuA, Paukov IE, Boldyreva EV. Low-temperature heat capacity of diglycylglycine: some summaries and forecasts for the heat capacity of amino acids and peptides. J Therm Anal Calorim. 2008;93:865–9.CrossRefGoogle Scholar
  22. 22.
    Paukov IE, Kovalevskaya YuA, Boldyreva EV. Low-temperature thermodynamic properties of l-cysteine. J Therm Anal Calorim. 2008;93:423–8.CrossRefGoogle Scholar
  23. 23.
    Paukov IE, Kovalevskaya YuA, Rahmoun NS, Geiger CA. A low-temperature heat capacity study of synthetic anhydrous Mg-cordierite (Mg2Al4Si2O18). Am Mineral. 2006;91:35–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Igor E. Paukov
    • 1
  • Yulia A. Kovalevskaya
    • 1
  • Alexei E. Arzamastcev
    • 2
  • Natalia A. Pankrushina
    • 2
    • 3
  • Elena V. Boldyreva
    • 2
    • 4
  1. 1.Institute of Inorganic Chemistry SB RASNovosibirskRussia
  2. 2.Novosibirsk State University, “Molecular Design and Ecologically Safe Technologies”NovosibirskRussia
  3. 3.Institute of Organic Chemistry SB RASNovosibirskRussia
  4. 4.Institute of Solid State Chemistry and Mechanochemistry SB RASNovosibirskRussia

Personalised recommendations