Journal of Thermal Analysis and Calorimetry

, Volume 105, Issue 1, pp 325–330 | Cite as

Di-carboxylic acid cross-linking interactions improves thermal stability and mechanical strength of reconstituted type I collagen

Part I. Oxalic acid
  • Tapas Mitra
  • G. Sailakshmi
  • A. Gnanamani
  • A. B. Mandal


This study emphasizes, cross-linking potential of a simple di-carboxylic acid, namely, oxalic acid with type I collagen for the preparation of collagen based biomaterial for clinical applications. Further the study discusses the characteristics features of the cross-linked material in comparison with the standard cross-linker. In addition, the study also demonstrates the role of ionic interactions in providing the thermal stability and tensile strength to the cross-linked biopolymer material. Type I collagen from rat tail tendon treated with oxalic acid at optimized concentrations provided a biopolymer material without changing the triple helical pattern of collagen (CD spectrum) and also with 6–7 fold increase in tensile strength than native collagen. FTIR spectral details demonstrate the ionic interactions between collagen and oxalic acid. Thermal stability analyses of oxalic acid cross-linked biopolymer revealed, high thermal stability compared to materials of glutaraldehyde cross-linked. The results of the study suggest oxalic acid as a suitable cross-linker for collagen and it cross-link with collagen through ionic interactions.


Type I collagen Oxalic acid Cross-linker Thermal stability Circular dichroism 



All authors thank Department of Biotechnology, Ministry of Science and Technology, New Delhi, for the financial assistance provided in the form of project in vide sanction no. BT/PR10179/AAQ/03/385/2007.


  1. 1.
    Usha R, Ramasami T. Effect of crosslinking agents (basic chromium sulfate and formaldehyde) on the thermal and thermomechanical stability of rat tail tendon collagen fibre. Thermochim Acta. 2000;356(1–2):59–66.CrossRefGoogle Scholar
  2. 2.
    Sheu M-T, Huang J-C, Yeh G-C, Ho H-O. Characterization of collagen gel solutions and collagen matrices for cell culture. Biomaterials. 2001;22(13):1713–9.CrossRefGoogle Scholar
  3. 3.
    Miles CA, Avery NC, Rodin VV, Bailey AJ. The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres. J Mol Biol. 2005;346(2):551–6.CrossRefGoogle Scholar
  4. 4.
    Nam K, Kimura T, Kishida A. Controlling coupling reaction of EDC and NHS for preparation of collagen gels using ethanol/water co-solvents. Macromol Biosci. 2008;8:32–7.CrossRefGoogle Scholar
  5. 5.
    Petite H, Rault I, Huc A, Menasche P, Herbage D. Use of the acyl azide method for cross-linking collagen-rich tissues such as pericardium. J Biomed Mater Res. 1990;24(2):179–87.CrossRefGoogle Scholar
  6. 6.
    Saito H, Murabayashi S, Mitamura Y, Taguchi T. Characterization of alkali-treated collagen gels prepared by different crosslinkers. J Mater Sci Mater Med. 2008;19:1297–305.CrossRefGoogle Scholar
  7. 7.
    Nunes PS, Bezerra MLS, Costa LP, Cardoso JC, Albuquerque RLC Jr, Rodrigues MO, Barin GB, Silva FAD, Jo AASA. Thermal characterization of usnic acid/collagen-based films. J Therm Anal Calorim. 2010;99:1011–4.CrossRefGoogle Scholar
  8. 8.
    Mitra T, Sailakshmi G, Gnanamani A, Raja ST, Thiruselvi T, Mangala Gowri V, Selvaraj NV, Ramesh G, Mandal AB. Preparation and characterization of a thermostable and biodegradable biopolymers using natural cross-linker. Int J Biol Macromol. 2011;48(2):276–85.CrossRefGoogle Scholar
  9. 9.
    Langmaier F, Mokrejs P, Mladek M. Heat-treated biodegradable films and foils of collagen hydrolysate crosslinked with dialdehyde starch. J Therm Anal Calorim. 2010;102:37–42.CrossRefGoogle Scholar
  10. 10.
    Weadock KS, Miller EJ, Bellincampi LD, Zawadsky JP, Dunn MG. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res. 1995;29(11):1373–9.CrossRefGoogle Scholar
  11. 11.
    Olde Damink LHH, Dijkstra PJ, van Luyn MJA, van Wachem PB, Nieuwenhuis P, Feijen J. Influence of ethylene oxide gas treatment on the in vitro degradation behavior of dermal sheep collagen. J Biomed Mater Res. 1995;29(2):149–55.CrossRefGoogle Scholar
  12. 12.
    Melina H, Heuzey MC, Begin A. Viscoelastic properties of phosphoric and oxalic acid-based chitosan hydrogels. Rheol Acta. 2006;45:659–75.CrossRefGoogle Scholar
  13. 13.
    Skotak M, Leonov AP, Gustavo L, Sandra N, Anuradha S. Biocompatible and biodegradable ultrafine fibrillar scaffold materials for tissue engineering by facile grafting of l-lactide onto chitosan. Biomacromolecules. 2008;9(7):1902–8.CrossRefGoogle Scholar
  14. 14.
    Jaklenec A, Wan E, Murray ME, Mathiowitz E. Novel scaffolds fabricated from protein-loaded microspheres for tissue engineering. Biomaterials. 2008;29(2):185–92.CrossRefGoogle Scholar
  15. 15.
    Ghaffari A, Navaee K, Oskoui M, Bayati K, Rafiee-Tehrani M. Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit RS intended for sigmoidal drug delivery. Eur J Pharm Biopharm. 2007;67(1):175–86.CrossRefGoogle Scholar
  16. 16.
    Wei X, Sun N, Wu B, Yin C, Wu W. Sigmoidal release of indomethacin from pectin matrix tablets: effect of in situ crosslinking by calcium cations. Int J Pharm. 2006;318(1–2):132–8.CrossRefGoogle Scholar
  17. 17.
    Tharanathan RN. Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol. 2003;14(3):71–7.CrossRefGoogle Scholar
  18. 18.
    Weber CJ, Haugaard V, Festersen R, Bertelsen G. Production and applications of biobased packaging materials for the food Industry. Food Addit Contam. 2002;19(4):172–7.Google Scholar
  19. 19.
    Chandrasekaran G, Torchia DA, Piez KA. Preparation of intact monomeric collagen from tail, aorta and skin and the structure of the nonhelical ends in solution. J Biol Chem. 1976;251:6062–7.Google Scholar
  20. 20.
    Lin YK, Liu DC. Comparison of physical–chemical properties of type I collagen from different species. Food Chem. 2006;99:244–51.CrossRefGoogle Scholar
  21. 21.
    Pavia DL, Lampman GM, Kriz GS. Introduction to spectroscopy. 3rd ed. USA: Thomson Learning, Inc; 2001.Google Scholar
  22. 22.
    Puett D. DTA and heals of hydration of some polypeptides. Biopolymers. 1967;5(3):327–30.CrossRefGoogle Scholar
  23. 23.
    Venugopal MG, Ramshaw JAM, Braswell E, Zhu D, Brodsky B. Electrostatic interactions in collagen-like triple-helical peptides. Biochemistry. 1994;33(25):7948–56.CrossRefGoogle Scholar
  24. 24.
    Sacca B, Renner C, Moroder L. The chain register in heterotrimeric collagen peptides affects triple helix stability and folding kinetics. J Mol Biol. 2002;324(2):309–18.CrossRefGoogle Scholar
  25. 25.
    Madhan B, Subramanian V, Rao JR, Nair BU, Ramasami T. Stabilization of collagen using plant polyphenol: role of catechin. Int J Biol Macromol. 2005;37(1–2):47–53.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Tapas Mitra
    • 1
  • G. Sailakshmi
    • 1
  • A. Gnanamani
    • 1
  • A. B. Mandal
    • 2
  1. 1.Microbiology DivisionCentral Leather Research Institute (Council of Scientific and Industrial Research)ChennaiIndia
  2. 2.Chemical LaboratoryCentral Leather Research Institute (Council of Scientific and Industrial Research)ChennaiIndia

Personalised recommendations