Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 3, pp 949–954 | Cite as

The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites



Phase change materials (PCM) have been extensively scrutinized for their widely application in thermal energy storage (TES). Paraffin was considered to be one of the most prospective PCMs with perfect properties. However, lower thermal conductivity hinders the further application. In this letter, we experimentally investigate the thermal conductivity and energy storage of composites consisting of paraffin and micron-size graphite flakes (MSGFs). The results strongly suggested that the thermal conductivity enhances enormously with increasing the mass fraction of the MSGFs. The formation of heat flow network is the key factor for high thermal conductivity in this case. Meanwhile, compared to that of the thermal conductivity, the latent heat capacity, the melting temperature, and the freezing temperature of the composites present negligible change with increasing the concentration of the MSGFs. The paraffin-based composites have great potential for energy storage application with optimal fraction of the MSGFs.


Thermal conductivity Paraffin MSGFs Heat network Latent heat capacity 



This study is supported by the National Natural Science Foundation of China (Grant No. 20346001), Science and technology of Guangzhou (Grant No. 2008Z1-1061), and Program for New Century Excellent Talents in University (Grant No. NCET-04-0826).


  1. 1.
    Kuznik F, David D, Johannes K, Roux JJ. A review on phase change materials integrated in building walls. Renew Sust Energ Rev. 2011;15(1):379–91.CrossRefGoogle Scholar
  2. 2.
    Nomura T, Okinaka N, Akiyama T. Technology of latent heat storage for high temperature application. A review. Isij Int. 2010;50(9):1229–39.CrossRefGoogle Scholar
  3. 3.
    Ren N, Wu YT, Wang T, Ma CF. Experimental study on optimized composition of mixed carbonate for phase change thermal storage in solar thermal power plant. J Therm Anal Calorim. 2011. doi: 10.1007/s10973-011-1364-5.
  4. 4.
    Jegadheeswaran S, Pohekar SD. Performance enhancement in latent heat thermal storage system: a review. Renew Sust Energ Rev. 2009;13(9):2225–44.CrossRefGoogle Scholar
  5. 5.
    Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev. 2009;13(2):318–45.CrossRefGoogle Scholar
  6. 6.
    Luyt AS, Krupa I. Phase change materials formed by uv curable epoxy matrix and Fischer-Tropsch paraffin wax. Energy Convers Manag. 2009;50(1):57–61.CrossRefGoogle Scholar
  7. 7.
    Zhong YJ, Li SZ, Wei XH, Liu ZJ, Guo QG, Shi JL, Liu L. Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage. Carbon. 2010;48(1):300–4.CrossRefGoogle Scholar
  8. 8.
    Sari A. Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Convers Manage. 2004;45(13–14):2033–42.CrossRefGoogle Scholar
  9. 9.
    Zeng JL, Sun LX, Xu F, Tan ZC, Zhang ZH, Zhang J, Zhang T. Study of a PCM based energy storage system containing Ag nanoparticles. J Therm Anal Calorim. 2007;87(2):369–73.CrossRefGoogle Scholar
  10. 10.
    Ai DS, Su LZ, Gao Z, Deng CS, Dai XM. Study of ZrO2 nanopowders based stearic acid phase change materials. Particuology. 2010;8(4):394–7.CrossRefGoogle Scholar
  11. 11.
    Wu SY, Zhu DS, Zhang XR, Huang J. Preparation and melting/freezing characteristics of Cu/Paraffin nanofluid as phase-change material (PCM). Energy Fuels. 2010;24:1894–8.CrossRefGoogle Scholar
  12. 12.
    Khodadadi JM, Hosseinizadeh SF. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Commun Heat Mass Transfer. 2007;34(5):534–43.CrossRefGoogle Scholar
  13. 13.
    Ramezanzadeh B, Attar M, Farzam M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J Therm Anal Calorim. 2011;103(2):731–9.CrossRefGoogle Scholar
  14. 14.
    Wu SY, Zhu DS, Li XF, Li H, Lei JX. Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochim Acta. 2009;483(1–2):73–7.CrossRefGoogle Scholar
  15. 15.
    Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF, Zhang L. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. J Therm Anal Calorim. 2009;95(2):507–12.CrossRefGoogle Scholar
  16. 16.
    Babu K, Kumar TSP. Effect of CNT concentration and agitation on surface heat flux during quenching in CNT nanofluids. Int J Heat Mass Transfer. 2011;54(1–3):106–17.CrossRefGoogle Scholar
  17. 17.
    Zhao JG, Guo QG, Gao XQ, Wei XH, Shi JL, Yao LZ, Liu L. Preparation of paraffin/expanded graphite phase change composites for thermal storage. New Carbon Mater. 2009;24(2):114–8.Google Scholar
  18. 18.
    Zhong YJ, Guo QG, Li SZ, Shi JL, Liu L. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage. Sol Energy Mater Sol Cells. 2010;94(6):1011–4.CrossRefGoogle Scholar
  19. 19.
    Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng. 2007;27(8–9):1271–7.CrossRefGoogle Scholar
  20. 20.
    Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339.CrossRefGoogle Scholar
  21. 21.
    Wei T, Fan ZJ, Luo GL, Zheng C, Xie DS. A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon. 2009;47(1):337–9.CrossRefGoogle Scholar
  22. 22.
    Anon. The rise and rise of graphene. Nat Nanotechnol. 2010;5(11):755.CrossRefGoogle Scholar
  23. 23.
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457(7230):706–10.CrossRefGoogle Scholar
  24. 24.
    Garg J, Poudel B, Chiesa M, Gordon JB, Ma JJ, Wang JB, Ren ZF, Kang YT, Ohtani H, Nanda J, McKinley GH, Chen G. Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys. 2008;103(7):074301.CrossRefGoogle Scholar
  25. 25.
    Maxwell CJ. Electricity and magnetism. Clarendon: Oxford; 1873.Google Scholar
  26. 26.
    Sun K, Stroscio MA, Dutta M. Graphite c-axis thermal conductivity. Superlattices Microstruct. 2009;45(2):60–4.CrossRefGoogle Scholar
  27. 27.
    Gao JW, Zheng RT, Ohtani H, Zhu DS, Chen G. Experimental investigation of heat conduction mechanisms in nanofluids clue on clustering. Nano Lett. 2009;9(12):4128–32.CrossRefGoogle Scholar
  28. 28.
    Wang J, Xie H, Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta. 2009;488(1–2):39–42.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations