Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 1, pp 39–44 | Cite as

An ab initio study of ground state, electronic and thermodynamical properties of GaP and Ga2P

  • Himadri R. Soni
  • Venu Mankad
  • Sanjay D. Gupta
  • Sanjeev K. Gupta
  • Prafulla K. Jha


In the present paper, we report an ab initio calculation of the ground state, electronic and thermodynamical properties like constant volume lattice specific heat, vibrational energy, internal energy, and entropy for GaP and Ga2P is presented. These properties are obtained after calculating the phonon spectrum over the entire Brillouin zone. The calculations were performed using the ABINIT program package, which is based on density functional theory (DFT) method and the use of pseudopotentials and plane wave expansion. Difference in the ground state properties such as electronic structure and thermodynamical properties are discussed. The thermodynamical properties follow the expected trend. There is a good agreement between present theoretical and limited available experimental data in the case of ground state such as lattice constant and bulk modulus and electronic properties. With the increase of Ga atoms in the unit cell the semiconducting nature of Ga2P turns to metallic. There is a noticeable difference in the thermodynamical properties in the case of both gallium compounds.


Thermal properties Semiconductor Density functional theory Band structure 



Computations were carried out on the computer cluster PAWAN at the Department of Physics, Bhavnagar University financed by the Department of Science and Technology, Govt. of India and the University Grant Commission, New Delhi.


  1. 1.
    Hou PX, Xu ST, Zhe Y, Yang QH, Liu C, Cheng HM. Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon. 2003;41(13):2471–6.CrossRefGoogle Scholar
  2. 2.
    Mujica A, Rubio A, Munoz A, Needs RJ. High-pressure phases of group-IV, III–V, and II–VI compounds. Rev Mod Phys. 2003;75:863–912 and References there in.Google Scholar
  3. 3.
    Nelmes RJ, McMahon MI, Belmomte SA. Nonexistence of the diatomic β-tin structure. Phys Rev Lett. 1997;79:3668–71.CrossRefGoogle Scholar
  4. 4.
    O’Brien SC, Liu Y, Zhang QL, Tittel FK, Smalley RE. Supersonic cluster beams of III–V semiconductors: GaxAsy. J Chem Phys. 1986;84:4074–9.CrossRefGoogle Scholar
  5. 5.
    Leopold DG, Ho J, Lineberger WC. Photoelectron spectroscopy of mass‐selected metal cluster anions. I. Cun, n = 1–10. J Chem Phys. 1987;86:1715–26.CrossRefGoogle Scholar
  6. 6.
    Mead RD, Stevens AE, Lineberger WC, Bowers MT, editors. Gas phase ion chemistry, vol. III. New York: Academic Press; 1984.Google Scholar
  7. 7.
    Shi L, Hao Q, Yu C, Mingo N, Kong X, Wang ZL. Thermal conductivities of individual tin dioxide nanobelts. Appl Phys Lett. 2004;84:2638–40.CrossRefGoogle Scholar
  8. 8.
    Li S, Van Zee RJ, Weltner W Jr. Magneto‐infrared spectra of the Si2, Ge2, and Sn2 molecules in rare‐gas matrices. J Chem Phys. 1994;100:7079–86.CrossRefGoogle Scholar
  9. 9.
    Balasubramanian K. Spectroscopic constants for GaAs2, GaAs2, Ga2As, and Ga2As. J Phys Chem A. 2000;104:1969–73.CrossRefGoogle Scholar
  10. 10.
    Hayashi S, Dargelos A, Pouchan C. Theoretical study of the low lying states of Ga2X (X = P, As). J Phys Chem A. 2010;114:9515–22.CrossRefGoogle Scholar
  11. 11.
    Taylor TR, Asmis KR, Gomez H, Neumark DM. Vibrationally resolved anion photoelectron spectra of GaX2 , Ga2X, Ga2X2 , and Ga2X3−(X = P, As). J Chem Phys (in press).Google Scholar
  12. 12.
    Van Zee RJ, Li S, Weltner W. Hyperfine interaction and structure of a gallium arsenide cluster: Ga2As3. J Chem Phys. 1993;98:4335–8.CrossRefGoogle Scholar
  13. 13.
    Li S, Van Zee RJ, Weltner W. Far-infrared spectra of small gallium phosphide, arsenide, and antimonide molecules in rare-gas matrixes at 4 K. J Phys Chem. 1993;97(44):11393–6.CrossRefGoogle Scholar
  14. 14.
    Andreoni W. III-V semiconductor microclusters: structures, stability, and melting. Phys Rev B. 1992;45:4203–7.CrossRefGoogle Scholar
  15. 15.
    Baroni S, Gironcoli De S, Corso Dal A, Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys. 2001;73:515.CrossRefGoogle Scholar
  16. 16.
    Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13:5188–92.CrossRefGoogle Scholar
  17. 17.
    Weast RC. Handbook of chemistry and physics. 62nd ed. Boca Raton, FL: Chemical Rubber; 1981. p. E99–E103.Google Scholar
  18. 18.
    Weil R, Groves W. The elastic constants of gallium phosphide. J Appl Phys. 1986;39:4049–51.CrossRefGoogle Scholar
  19. 19.
    Muller RH, Trommer R, Cardona M, Vogl P. Pressure dependence of the direct absorption edge of InP. Phys Rev B. 1980;21:4879-4883.CrossRefGoogle Scholar
  20. 20.
    Froyen S, Cohen ML. Structural properties of III–V zinc-blende semiconductors under pressure. Phys Rev B. 1983;28:3258–65.CrossRefGoogle Scholar
  21. 21.
    Zhang SB, Cohen ML. High-pressure phases of III-V zinc-blende semiconductors. Phys Rev B. 1987;35:7604–10.CrossRefGoogle Scholar
  22. 22.
    Rodriguez CO, Kunc K. Longitudinal phonons in gallium phosphide at high pressures. J Phys C. 1988;21:5933–41.CrossRefGoogle Scholar
  23. 23.
    Murnaghan FD. The compressibility of media under extreme pressures. Proc Natl Acad Sci USA. 1944;30(9):244–7.CrossRefGoogle Scholar
  24. 24.
    Zallen R, Paul W. Band structure of gallium phosphide from optical experiments at high pressure. Phys Rev. 1964;134:A1628–41.CrossRefGoogle Scholar
  25. 25.
    Lee C, Gonze X. Ab initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 α-quartz and stishovite. Phys Rev B. 1995;51:8610–3.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Himadri R. Soni
    • 1
  • Venu Mankad
    • 1
  • Sanjay D. Gupta
    • 1
  • Sanjeev K. Gupta
    • 1
  • Prafulla K. Jha
    • 1
  1. 1.Department of PhysicsBhavnagar UniversityBhavnagarIndia

Personalised recommendations