Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 105, Issue 2, pp 599–606 | Cite as

Thermal behavior of blends based on a thermoplastic-modified epoxy resin with a crosslinking density variation

  • Maite Rico
  • Joaquín López
  • Rebeca Bouza
  • Rosa Bellas
Article

Abstract

The thermal behavior of blends based on a polystyrene (PS) and several epoxy-amine systems where amino groups were provided by a monoamine (MA) and a diamine (DA) mixed in different proportions was investigated. This way, the crosslinking density of epoxy-amine polymer was controlled and continuously changed from a linear polymer (epoxy-MA) to a highly crosslinked polymer (epoxy-DA). The effect of the MA–DA proportion and PS modifier on the thermal stability, glass transition, and polymerization reaction was studied by differential scanning calorimetry and thermogravimetric analysis. The MA–DA ratio and modifier proportion did not affect the reaction heat but affected the reactivity. The thermal stability and glass transition temperature increased by increasing the DA proportion in the blend as a result of the higher degree of crosslinking. A study of miscibility of blends based on glass transitions was performed. The thermoplastic-modified materials generally showed two glass transitions with values close to the those of the pure materials, indicating that the mixtures were separated into phases.

Keywords

Thermoplastic/thermoset blends Thermal stability Glass transition temperature Polymerization reaction Miscibility 

Notes

Acknowledgements

The financial support of the Ministerio de Educación y Ciencia (CICYT MAT2007-61677) is gratefully acknowledged.

References

  1. 1.
    Williams RJJ, Rozenberg BA, Pascault JP. Reaction-induced phase separation in modified thermosetting polymers. In: Koenis JL, editor. Advances in polymer science, volume 128: polymer analysis, polymer physics. Berlin: Springer; 1997. p. 95–156.Google Scholar
  2. 2.
    Pascault JP, Williams RJJ. Formulation and characterization of thermoset-thermoplastic blends. In: Paul DR, Bucknall CB, editors. Polymer blends volume 1: formulation, chap 13. New York: Wiley; 2000. p. 379–415.Google Scholar
  3. 3.
    Ehrenstein GW. Polymeric materials: structure–properties-applications. Munich: Hanser Publishers; 2001. p. 55.Google Scholar
  4. 4.
    Cano J, Torres A, Abad MJ, Barral L, Díez FJ, López J. Characterization of an ABS-modified epoxy system. Polym Int. 2002;51:1268–76.CrossRefGoogle Scholar
  5. 5.
    López J, Ramírez C, Abad MJ, Barral L, Cano J, Díez FJ. Dynamic mechanical analysis of an epoxy/thermoplastic blend: polymerization-induced phase separation. Polym Int. 2002;51:1100–6.CrossRefGoogle Scholar
  6. 6.
    Girard-Reydet E, Vicard V, Pascault JP, Sautereau H. Polyetherimide-modified epoxy networks: influence of cure conditions on morphology and mechanical properties. J Appl Polym Sci. 1997;65:2433–45.CrossRefGoogle Scholar
  7. 7.
    Torres A, López-de-Ullibarri I, Abad MJ, Barral L, Cano J, García-Garabal S, Díez FJ, López J, Ramírez C. Study of the effect of poly(acrylonitrile-co-butadiene-co-styrene) on the mechanical properties of an epoxy system. J Appl Polym Sci. 2004;92:461–7.CrossRefGoogle Scholar
  8. 8.
    Arribas C, Masegosa RM, Salom C, Arévalo E, Prolongo SG, Prolongo MG. Epoxy/poly(benxyl methacrylate) blends: miscibility, phase separation on curing and morphology. J Therm Anal Calorim. 2006;86(3):693–8.CrossRefGoogle Scholar
  9. 9.
    Schroeder WF, Borrajo J, Aranguren MI. Poly(methyl methacrylate)-modified vinyl ester thermosets: morphology, volume shrinkage, and mechanical properties. J Appl Polym Sci. 2007;106:4007–17.CrossRefGoogle Scholar
  10. 10.
    Dong JP, Huang JG, Lee FH, Roan JW, Huang YJ. Effect of poly(methyl methacrylate)-based low-profile additives on the properties of cured unsaturated polyester resins. I. Miscibility, curing behavior, and glass-transition temperatures. J Appl Polym Sci. 2004;91:3369–87.CrossRefGoogle Scholar
  11. 11.
    Auad ML, Frontini PM, Borrajo J, Aranguren MI. Liquid rubber modified vinyl ester resins: fracture and mechanical behavior. Polymer. 2001;42:3723–30.CrossRefGoogle Scholar
  12. 12.
    Auad ML, Proia M, Borrajo J, Aranguren MI. Rubber modified vinyl ester resins of different molecular weights. J Mater Sci. 2002;37:4117–26.CrossRefGoogle Scholar
  13. 13.
    Zucchi IA, Galante MJ, Williams RJJ. Comparison of morphologies and mechanical properties of crosslinked epoxies modified by polystyrene and poly(methyl methacrylate) or by the corresponding block copolymer polystyrene-b-poly(methyl methacrylate). Polymer. 2005;46:2603–9.CrossRefGoogle Scholar
  14. 14.
    López J, Rico M, Montero B, Díez J, Ramírez C. Polymer blends based on an epoxy-amine thermoset and a thermoplastic. J Therm Anal Calorim. 2009;95(2):369–76.CrossRefGoogle Scholar
  15. 15.
    Radhakrishnan CK, Sujith A, Unnikrishnan G. Thermal behaviour of styrene butadiene rubber/poly(ethylene-co-vinyl acetate) blends TG and DSC analysis. J Therm Anal Calorim. 2007;90(1):191–9.CrossRefGoogle Scholar
  16. 16.
    Barral L, Cano J, López J, López-Bueno I, Nogueira P, Ramírez C, Torres A, Abad MJ. Thermal properties of amine cured diglycidyl ether of bisphenol A epoxi blended with poly(ether imide). Thermochim Acta. 2000;344:137–43.CrossRefGoogle Scholar
  17. 17.
    Ramírez C, Rico M, López J, Montero B, Montes R. Study of an epoxy system cured with different diamines by differential scanning calorimetry. J Appl Polym Sci. 2007;103:1759–68.CrossRefGoogle Scholar
  18. 18.
    Li Q, Zhong H, Wei P, Jiang P. Thermal degradation behaviors of polypropylene with novel silicon-containing intumescent flame retardant. J Appl Polym Sci. 2005;98:2487–92.CrossRefGoogle Scholar
  19. 19.
    Vinnik RM, Roznyatovsky VA. Kinetic method by using calorimetry to mechanism of epoxy-amine cure reaction. Part VIII. A comparative study of some epoxy-amine reactions. J Therm Anal Calorim. 2006;85(2):455–61.CrossRefGoogle Scholar
  20. 20.
    López J, López-Bueno I, Nogueira P, Ramírez C, Abad MJ, Barral L, Cano J. Effect of poly(styrene-co-acrylonitrile) on the curing of an epoxy/amine resin. Polymer. 2001;42:1669–77.CrossRefGoogle Scholar
  21. 21.
    Del Río C, Acosta JL. Determination of the interaction parameter of partially or totally compatible systems through glass transition temperature measurements. Eur Polym J. 1996;32(7):913–7.CrossRefGoogle Scholar
  22. 22.
    Remiro PM, Riccardi CC, Corcuera MA, Mondragon I. Design of morphology in PMMA-modified epoxy resins by control of curing conditions. I. Phase behavior. J Appl Polym Sci. 1999;74:772–80.CrossRefGoogle Scholar
  23. 23.
    Blanco M, López M, Fernández R, Martín L, Riccardi CC, Mondragon I. Thermoplastic-modified epoxy resins cured with different functionalities amine mixtures. Kinetics and miscibility study. J Therm Anal Calorim. 2009;97:969–78.CrossRefGoogle Scholar
  24. 24.
    Blanco M, López M, Alvarez De Arcaya P, Ramos JA, Kortaberria G, Riccardi CC, Mondragon I. Thermoplastic-modified epoxy resins cured with different functionalities amine mixtures. Morphology, thermal behavior, and mechanical properties. J Appl Polym Sci. 2009;114:1753–60.CrossRefGoogle Scholar
  25. 25.
    Klute CH, Viehmann W. Heat of polymerization of phenyl glycidyl ether and of an epoxy resin. J Appl Polym Sci. 1961;13:86–95.CrossRefGoogle Scholar
  26. 26.
    Girard-Reydet E, Riccardi CC, Sautereau H, Pascault JP. Epoxy-aromatic diamine kinetics. 2. Influence on epoxy-amine network formation. Macromolecules. 1995;28:7608–11.CrossRefGoogle Scholar
  27. 27.
    Hoppe CE, Galante MJ, Oyanguren PA, Williams RJJ, Girard-Reydet E, Pascault JP. Transparent multiphasic polystyrene/epoxy blends. Polym Eng Sci. 2002;42(12):2361–8.CrossRefGoogle Scholar
  28. 28.
    Ramírez C, Rico M, Barral L, Díez J, García-Garabal S, Montero B. Organic/inorganic hybrid materials from an epoxy resin cured by an amine silsesquioxane. J Therm Anal Calorim. 2007;87(1):69–72.CrossRefGoogle Scholar
  29. 29.
    Forrest MJ. Application to thermoplastics and rubbers. In: Gabbott P, editor. Principles and applications of thermal analysis, chap 6. Oxford: Blackwell Publishing; 2008. p. 191–212.Google Scholar
  30. 30.
    Eisenberg P, Lucas JC, Williams RJJ. Hibrid organic–inorganic polymer networks based on the copolymerization of methacryloxypropyl-silsesquioxanes and styrene. Macromol Symp. 2002;189:1–13.CrossRefGoogle Scholar
  31. 31.
    Schroeder WF, Auad ML, Barcia Vico MA, Borrajo J, Aranguren MI. Thermodynamic, morphological, mechanical and fracture properties of poly(methyl methacrylate) (PMMA) modified divinylester(DVE)/styrene(St) thermosets. Polymer. 2005;46:2306–19.CrossRefGoogle Scholar
  32. 32.
    MacKnight WJ, Karasz FE, Fried JR. Solid state transition behavior of blends. In: Paul DR, Newman S, editors. Polymer blends, chap 5, vol. 1. San Diego: Academic Press Inc.; 1978. p. 185.Google Scholar
  33. 33.
    Fried JR. Applications of thermal analysis to the study of polymer blends. In: Dawkins JV, editor. Developments in polymer characterization, chap 2, vol. 4. London: Applied Science Publishers; 1983. p. 39–90.Google Scholar
  34. 34.
    Gardlund ZG. Properties and morphology of poly(methyl methacrylate)/bisphenol A polycarbonate blends. In: Han CD, editor. Polymer blends and composites in multiphase systems, Advances in chemistry series 206, chap 9. Washington, DC: American Chemical Society; 1984. p. 129–48.CrossRefGoogle Scholar
  35. 35.
    Riccardi CC, Borrajo J, Meynie L, Fenouillot F, Pascault JP. Thermodynamic analysis of the phase separation during the polymerization of a thermoset system into a thermoplastic matrix. I. Effect of composition on cloud-point curves. J Polym Sci B. 2004;42:1351–60.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Maite Rico
    • 1
  • Joaquín López
    • 1
  • Rebeca Bouza
    • 1
  • Rosa Bellas
    • 1
  1. 1.Departamento de Física, E.U.P. FerrolUniversidad de A CoruñaFerrolSpain

Personalised recommendations