Spectral and thermal characterization of grown organic single crystal

Semicarbazone of p-hydroxy benzaldehyde (SPHB)
  • S. Janarthanan
  • R. Sugaraj Samuel
  • Y. C. Rajan
  • P. R. Umarani
  • S. Pandi


The growth of semicarbazone of p-hydroxy benzaldehyde (SPHB) single crystal by slow evaporation solution growth technique is reported in this article. The grown crystal was subjected to powder XRD study to identify the crystalline nature. Single crystal XRD study was done to measure unit cell parameters and to confirm the crystal structure. In the presence of various functional groups of SPHB was identified by FTIR spectrum. Its optical behavior was examined by UV–Vis–NIR spectrum and the crystal was found to have transparency in the region between 245 and 1100 nm. Thermal properties of the crystal were investigated using thermogravimetric and differential thermal analysis (TG-DTA), which indicated that the melting of the material occurred before decomposition. The nonlinear optical (NLO) property was tested by Kurtz–Perry powder technique for second harmonic generations.


Crystal growth X-ray diffraction Optical material Thermal studies 


  1. 1.
    Gunter P, Bosshard Ch, Shutter K, Arend H, Chapuis G, Twisg RJ, Dobrowolski D. 2-cyclooctylamino-5-nitropyridine, a new nonlinear optical crystal with orthorhombic symmetry. Appl Phys Lett. 1987;50:486–8.CrossRefGoogle Scholar
  2. 2.
    Tao XT, Yuan DR, Zhang N, Jiang MH, Shao ZS. Novel organic molecular second harmonic generation crystal: 3-methoxy-4-hydroxy-benzaldehyde. Appl Phys Lett. 1992;60:1415–7.CrossRefGoogle Scholar
  3. 3.
    Badan J, Hierle R, Perigaud A, Zyss J. Nonlinear optical properties of organic molecules and polymeric material. In: Williams DJ, editor. American Chemical Symposium Series, vol 233. Washington: American Chemical Society; 1993.Google Scholar
  4. 4.
    Chemla DS, Zyss J. Nonlinear optical properties of organic molecules and crystals, vol I & II. New York: Academic; 1987.Google Scholar
  5. 5.
    Nalwa HS, Miyata S. Nonlinear optics of organic molecules and polymers. Boca Raton, FL: CRC Press; 1997.Google Scholar
  6. 6.
    Bosshard C, Sutter K, Pretre P, Hulliger J, Floersheimer M, Kaatz P, Guenter P. Organic nonlinear optical materials. Amsterdam: Cordon and Breach; 1995.Google Scholar
  7. 7.
    Sukhorukov AA, Kivshar YS. Nonlinear guided waves and spatial solutions in a periodic layered medium. J Opt Soc Am. 2002;19B:772–8.Google Scholar
  8. 8.
    Maroulis G. Static hyperpolarizability of the water dimmer and the interaction hyperpolarizability of two water molecules. J Chem Phys. 2000;113:1813–20.CrossRefGoogle Scholar
  9. 9.
    Maroulis G. Electric multipole moment, dipole and quadrupole (hyper) polarizability derivatives for HF (X 1Σ +). J Mol Struct (Theochme). 2003;633:177–97.CrossRefGoogle Scholar
  10. 10.
    Schoonveld WA, Wildeman J, Fichou D, Bobbert PA, Van Wees BJ, Klapwijk TM. Coulomb-blockade transport in single-crystal organic thin-film transistors. Nature. 2000;404:977–80.CrossRefGoogle Scholar
  11. 11.
    Rappoport Z. CRC hand book of tables for organic compound identification. 2nd ed. Boca Raton, FL: CRC Press; 1984.Google Scholar
  12. 12.
    Shriner RL, Fussion RC, Curtin DY, Morrill TC. The systematic identification of organic compounds. 6th ed. New York: John Wiley & Sons; 1980.Google Scholar
  13. 13.
    Mojumdar SC, Raki L. Preparation, thermal spectral and microscopic studied of calcium silicate hydrate-poly(acrylic acid) nanocomposite materials. J Therm Anal Calorim. 2006;85:99–105.CrossRefGoogle Scholar
  14. 14.
    Madurambal G, Mariappan M, Majumdar SC. Thermal, UV and FTIR spectral studies of urea–thiourea zinc chloride single crystal. J Therm Anal Calorim. 2010;100:763–8.CrossRefGoogle Scholar
  15. 15.
    Meenakshisundaram SP, Parthiban S, Madhrambal G, Majumdar SC. Effect of chelating agent (1, 10-phenanthroline) on potassium hydrogen phthalate crystal. J Therm Anal Calorim. 2008;94:21–5.CrossRefGoogle Scholar
  16. 16.
    Rajasekaran M, Anbusrinivasan P, Mojumdar SC. Growth, spectral and thermal characterization of 8-hydroxyquinoline. J Therm Anal Calorim. 2010;100:827–30.CrossRefGoogle Scholar
  17. 17.
    Ondrusova D, Jona E, Simon P. Thermal properties of N-ethyl-N phenyldithiocarbamates and their influence on the kinetics of cure. J Therm Anal Calorim. 2002;67:147–52.CrossRefGoogle Scholar
  18. 18.
    Verma RK, Verma L, Ranjan M, Verma BP, Mojumdar SC. Thermal analysis of 2-oxocyclopentanedithiocarboxylato complexes of iron(III), copper(II) and zinc(II) containing pyridine or morpholine as the second ligand. J Therm Anal Calorim. 2008;94:27–31.CrossRefGoogle Scholar
  19. 19.
    Madhurambal G, Ramasamy P, Anbusrinivasan P, Vasudevan G, Kavitha S, Mojumdar SC. Growth and characterization studies of 2-bromo-40-chloro-acetophenone (BCAP) crystals. J Therm Anal Calorim. 2008;94:59–62.CrossRefGoogle Scholar
  20. 20.
    Madhurambal G, Mariappan M, Mojumdar SC. TG–DTA, UV and FTIR spectroscopic studies of urea–thiourea mixed crystal. J Therm Anal Calorim. 2010;100:853–6.CrossRefGoogle Scholar
  21. 21.
    Madhurambal G, Ravindran B, Mariappan M, Mojumdar SC. Thermal, UV and FTIR spectral studies in alkali metal cinnamates. J Therm Anal Calorim. 2010;100:811–5.CrossRefGoogle Scholar
  22. 22.
    Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR. Vogels text book of practical organic chemistry, 5th ed. London: English Language Book Society, Chapman and Hall; 1996.Google Scholar
  23. 23.
    Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys. 1968;39:3798–813.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • S. Janarthanan
    • 1
  • R. Sugaraj Samuel
    • 2
  • Y. C. Rajan
    • 3
  • P. R. Umarani
    • 1
  • S. Pandi
    • 1
  1. 1.Department of PhysicsPresidency CollegeChennaiIndia
  2. 2.Department of ChemistryPresidency CollegeChennaiIndia
  3. 3.Department of Materials ScienceNational Chiao Tung UniversityHsinchuTaiwan, ROC

Personalised recommendations