Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 2, pp 617–624 | Cite as

Thermal stability and crystallization kinetics of Pb and Bi borate-based glasses



Glasses with compositions 60B2O3–40PbO, 60B2O3–40Bi2O3, and 60B2O3–30Bi2O3–10PbO have been prepared and studied by differential thermal analysis. The crystallization kinetics of the glasses was investigated under non-isothermal conditions. From dependence of the glass transition temperature (T g) on the heating rate, the activation energy for the glass transition was derived. Similarly the activation energy of the crystallization process was determined. Thermal stability of these glasses were achieved in terms of the characteristic temperatures, such as the glass transition temperature, T g, the onset temperature of crystallization, T in , the temperature corresponding to the maximum crystallization rate, T p, beside the kinetic parameters, K(T g) and K(T p). The results revealed that the 60B2O3–40PbO is more stable than the others. The crystallization mechanism is characterized for glasses. The phases at which the glass crystallizes after the thermal process have been identified by X-ray diffraction.


Borate-based glasses Thermal stability Crystallization kinetics XRD analysis 



The authors thank Sabic Company through the Deanship of Scientific Research at Qassim University for financial support under contract no. SR-S-009-07.


  1. 1.
    Fukawa Y, Matsuda Y, Kawashima M, Kojima S. Determination of complex-specific heat and fragility of sodium borate glasses by temperature-modulated DSC. J Therm Anal Calorim. 2010;99:39–44.CrossRefGoogle Scholar
  2. 2.
    Venkataraman B, Varma K. Structural and optical properties of (100 − x)(Li2B4O7) − x(SrO–Bi2O3–0.7Nb2O5–0.3V2O5) glasses and glass nanocrystal composites. Opt Mater. 2006;28:1423–9.CrossRefGoogle Scholar
  3. 3.
    Dutta A, Ghosh A. Structural and optical properties of lithium barium bismuthate glasses. J Non-Cryst Solids. 2007;353:1333–4.CrossRefGoogle Scholar
  4. 4.
    Stone CE, Wright AC, Sinclair RN, Feller SA, Affatigato M, Hogan DL, Nelson ND, Vira C, Dimitriev YB, Gattef EM, Ehrt D. Structure of bismuth borate glasses. Phys Chem Glasses. 2000;41:409–12.Google Scholar
  5. 5.
    Wang S, Tan Z, Li Y, Sun L, Zhang T. Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites. Thermochim Acta. 2006;441:191–4.CrossRefGoogle Scholar
  6. 6.
    Zheng H, Mackenzie J. Bi4Sr3Ca3 Cu4O16 glass and superconducting glass ceramics. Phys Rev B. 1988;38:7166–8.CrossRefGoogle Scholar
  7. 7.
    Hu Y, Lin U-L, Liu N-H. Effect of copper valence on the glass structure and crystallization behavior of Bi–Pb–Cu–O glasses. Mater Chem Phys. 1997;49:115–9.CrossRefGoogle Scholar
  8. 8.
    Szumera M, Wacławska I, Olejniczak Z. Influence of B2O3 on the structure and crystallization of soil active glasses. J Therm Anal Calorim. 2010;99:879–86.CrossRefGoogle Scholar
  9. 9.
    Onishi M, Kyoto M, Watanabe M. Properties of Bi–Pb–Sr–Ca–Cu–O glass-ceramic fibers formed by glass-drawing method. Jpn J Appl Phys. 1991;30:L988–90.CrossRefGoogle Scholar
  10. 10.
    Yinnon H, Uhlmann DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory. J Non-Cryst Solids. 1983;54:253–75.CrossRefGoogle Scholar
  11. 11.
    Simon S, Todea M. Spectroscopic study on iron doped silica-bismuthate glasses and glass ceramics. J Non-Cryst Solids. 2006;352:2947–51.CrossRefGoogle Scholar
  12. 12.
    Pan Z, Morgan SH, Long BH. Raman scattering cross-section and non-linear optical response of lead borate glasses. J Non-Cryst Solids. 1995;185:127–8.CrossRefGoogle Scholar
  13. 13.
    Wu JM, Huang HL. Microwave properties of zinc, barium and lead borosilicate glasses. J Non-Cryst Solids. 1999;260:116–9.CrossRefGoogle Scholar
  14. 14.
    Srivastava P, Rai SB, Rai DK. Effect of lead oxide on optical properties of Pr3+ doped some borate based glasses. J Alloys Compd. 2004;368:1–8.CrossRefGoogle Scholar
  15. 15.
    Lower NP, McRae JL, Feller HA, Betzen AR, Kapoor S, Affatigato M, Feller SA. Physical properties of alkaline-earth and alkali borate glasses prepared over an extended range of compositions. J Non-Cryst Solids. 2001;293:669–75.CrossRefGoogle Scholar
  16. 16.
    Liu HS, Chin TS, Yung SW. FTIR and XPS studies of low-melting PbO–ZnO–P2O2 glasses. Mater Chem Phys. 1997;50:1–11.CrossRefGoogle Scholar
  17. 17.
    Honma T, Benino Y, Fujiwara T, Sato R, Komatsu T. New optical nonlinear crystallized glasses and YAG laser-induced crystalline dot formation in rare-earth bismuth borate system. Opt Mater. 2002;20:27–33.CrossRefGoogle Scholar
  18. 18.
    Honma T, Benino Y, Fujiwara T, Komatsu T, Sato R. Nonlinear optical crystal-line writing in glass by yttrium aluminium garnet laser irradiation. Appl Phys Lett. 2003;82:892–3.CrossRefGoogle Scholar
  19. 19.
    Dietzel A. Glass structure and glass properties. Glasstech. 1968;22:41.Google Scholar
  20. 20.
    Sakka S, Mackenzie JD. Relation between apparent glass transition temperature and liquids temperature for inorganic glasses. J Non-Cryst Solids. 1971;6:145–62.CrossRefGoogle Scholar
  21. 21.
    Hruby A. Evaluation of glass-forming tendency by means of DTA. Czech J Phys B. 1972;22:1187–93.CrossRefGoogle Scholar
  22. 22.
    Saad M, Poulain M. Glass forming ability criterion. Mater Sci Forum. 1987;19:11.CrossRefGoogle Scholar
  23. 23.
    Surinach S, Baro MD, Clavaguera-Mora MT, Clavaguera N. Glass formation and crystallization in the GeSe2–Sb2Te3 system. J Mater Sci. 1984;19:3005–12.CrossRefGoogle Scholar
  24. 24.
    Hu L, Jiang Z, Chin J. A new criterion for crystallization of glass. Ceram Soc. 1990;18:315–21.Google Scholar
  25. 25.
    Shaaban ER, Shapaan M, Saddeek YB. Structural and thermal stability criteria of Bi2O3–B2O3 glasses. J Phys: Condens Matter. 2008;20:155108–9.CrossRefGoogle Scholar
  26. 26.
    Baia L, Stefan R, Kiefer W, Popp J, Simon S. Structural investigations of copper doped B2O3–Bi2O3 glasses with high bismuth oxide content. J Non-Cryst Solids. 2002;303:379–86.CrossRefGoogle Scholar
  27. 27.
    Lide D. CRC handbook of chemistry and physics. 84th ed. Boca Raton: CRC Press; 2004.Google Scholar
  28. 28.
    Vazquez J, Lopez-Alemany PL, Villares P, Jimenez-Garay R. Generalization of the Avrami equation for the analysis of nonisothermal transformation kinetics. Application to the crystallization of the Cu0.20As0.30Se0.50 alloy. J Phys Chem Solids. 2000;61:493–500.CrossRefGoogle Scholar
  29. 29.
    Mehta N, Agarwal P, Kumar A. Calorimetric studies of glass forming ability and thermal stability in a-Se 80Te 19.5 M 0.5(M = Ag, Cd, In, Sb) alloys. Eur Phys J Appl Phys. 2005;31:153–6.CrossRefGoogle Scholar
  30. 30.
    Shaaban ER, Dessouky MT, Abousehly AM. Glass forming tendency in ternary GexAs20Te80−x glasses examined using differential scanning calorimetry. J Phys: Condens Matter. 2007;19:096212-11.CrossRefGoogle Scholar
  31. 31.
    Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Met Eng. 1939;135:416–58.Google Scholar
  32. 32.
    Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.CrossRefGoogle Scholar
  33. 33.
    Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–84.CrossRefGoogle Scholar
  34. 34.
    Arora A, Shaaban ER, Singh K, Pandey OP. Non-isothermal crystallization kinetics of ZnO–BaO–B2O3–SiO2 glass. J Non-Cryst Solids. 2008;354:3944–51.CrossRefGoogle Scholar
  35. 35.
    Goel A, Shaaban ER, Tulyaganov DU, Ferreira JMF. Study of crystallization kinetics in glasses along the diopside–Ca-Tschermak join. J Am Ceram Soc. 2008;91:2690–8.CrossRefGoogle Scholar
  36. 36.
    Matusita K, Saka S. Kinetic study of crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot. J Non-Cryst Solids. 1980;38–39:741–6.CrossRefGoogle Scholar
  37. 37.
    Mahadevan S, Giridhar A, Sing AK. Calorimetric measurements on As–Sb–Se glasses. J Non-Cryst Solids. 1986;88:11–34.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Physics Department, College of ScienceQassim UniversityBuryadhKingdom of Saudi Arabia
  2. 2.Department of Physics, Faculty of ScienceAl-Azahar UniversityAssiutEgypt
  3. 3.Physics Department, Faculty of ScienceSohag UniversitySohagEgypt

Personalised recommendations