Journal of Thermal Analysis and Calorimetry

, Volume 105, Issue 1, pp 157–160 | Cite as

Characterization and thermal behavior of kaolin

  • Hongyan Wang
  • Chunshan Li
  • Zhijian Peng
  • Suojiang Zhang


The decomposition behavior of kaolin samples has been carried out by simultaneous TG–DTA experiments. New layer-structure formation during the calcination process was found, and metakaolin compound was detected between 600 and 900 °C. The thermal stability of kaolin samples was then identified by TG–DTA, and the results are confirmed by characterization of X-ray powder diffraction (XRD), N2 adsorption (Brunauer-Emmet-Teller model, BET), and scanning electron microscopy (SEM).


Kaolin Thermal analysis Calcination Layer structure 



This research is supported by the National Natural Science Foundation of China (No. 21006113) and National Basic Research Program of China (973 Program No. 2009CB219900).


  1. 1.
    Prasad MS, Reid KJ, Murray HH. Kaolin: processing, properties and applications. Appl Clay Sci. 1991;6(4):87–119.CrossRefGoogle Scholar
  2. 2.
    Vaccari A. Clays and catalysis: a promising future. Appl Clay Sci. 1999;14(4):161–98.CrossRefGoogle Scholar
  3. 3.
    Kök MV, Smykatz-Kloss W. Thermal characterization of dolomites. J Therm Anal Calorim. 2001;64:1271–5.CrossRefGoogle Scholar
  4. 4.
    Ip KH, Stuart BH, Thomas PS. Thermal characterization of the clay binder of heritage Sydney sandstones. J Therm Anal Calorim. 2008;92:97–100.CrossRefGoogle Scholar
  5. 5.
    Cekerevac C, Laloui L. Experimental study of thermal effects on the mechanical behaviour of a clay. Int J Numer Anal Met. 2004;28:209–28.CrossRefGoogle Scholar
  6. 6.
    Magaraphan R, Lilayuthalert W, Sirivat A. Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites. Compos Sci Technol. 2001;61:1253–64.CrossRefGoogle Scholar
  7. 7.
    Castelein O, Soulestin B, Bonnet JP, Blanchart P. The influence of heating rate on the thermal behavior and mullite formation from a kaolin raw material. Ceram Int. 2001;27:517–22.CrossRefGoogle Scholar
  8. 8.
    Liu XM, Yan ZF, Wang HP. In situ synthesis of zeolite with coal based clay. J Univ Petrol. 2002;26:94–9.Google Scholar
  9. 9.
    Önal M, Sarikaya Y. Thermal behavior of a bentonite. J Therm Anal Calorim. 2007;90(1):167–72.CrossRefGoogle Scholar
  10. 10.
    Önal M, Sarikaya Y. Thermal analysis of some organoclays. J Therm Anal Calorim. 2008;91(1):261–5.CrossRefGoogle Scholar
  11. 11.
    Yener N, Önal M, Üstünisik G, Sarkaya Y. Thermal behavior of a mineral mixture of sepiolite and dolomite. J Therm Anal Calorim. 2007;88:813–7.CrossRefGoogle Scholar
  12. 12.
    Kök MV, Smykatz-Kloss W. Characterization, correlation and kinetics of dolomite samples as outlined by thermal methods. J Therm Anal Calorim. 2008;9:565–8.CrossRefGoogle Scholar
  13. 13.
    Bellotto M, Gualtieri A, Artioli G. Kinetic study of the kaolinite-mullite reaction sequence. Part I: kaolinite dehydroxylation. Phys Chem Miner. 1995;22:207–14.CrossRefGoogle Scholar
  14. 14.
    Gualtieri A, Bellotto M, Artioli G. Kinetic study of the kaolinite-mullite reaction sequence. Part : mullite formation. Phys Chem Miner. 1995;22:215–22.CrossRefGoogle Scholar
  15. 15.
    White Claire E, Provis John L, Thomas P. Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Phys Chem Chem Phys. 2010;12:3239–45.CrossRefGoogle Scholar
  16. 16.
    Badogiannis E, Kakali G, Tsivilis S. Metakaolin as supplementary cementitious material - Optimization of kaolin to metakaolin conversion. J Therm Anal Calorim. 2005;8:457–62.CrossRefGoogle Scholar
  17. 17.
    Shvarzman A, Kovler K, Grader G. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cem Concr Res. 2003;33:405–16.CrossRefGoogle Scholar
  18. 18.
    Rahier H, Van Mele B, Biesemans M. Low-temperature synthesized aluminosilicate glasses. 2.Rheological transformations during low-temperature cure and high-temperature properties of a model compound. Mater Sci. 1996;31:80–5.CrossRefGoogle Scholar
  19. 19.
    Breck DW. Zeolite molecular sieves. New York: Wiley-Interscience; 1974. p. 314–315.Google Scholar
  20. 20.
    Ninov J, Donchev I, Dimova L. On the kinetics of pozzolanic reaction in the system kaolin–lime–water. J Therm Anal Calorim. 2010. doi:  10.1007/s10973-009-0563-9.
  21. 21.
    Kakali G, Perraki T, Tsivilis S, Badogiannis E. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Appl Clay Sci. 2001;20:73–80.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Hongyan Wang
    • 1
    • 2
  • Chunshan Li
    • 2
  • Zhijian Peng
    • 1
  • Suojiang Zhang
    • 2
  1. 1.School of Engineering and TechnologyChina University of GeosciencesBeijingChina
  2. 2.State Key Laboratory of Multiphase Complex SystemsInstitute of Process Engineering, Chinese Academy of SciencesBeijingChina

Personalised recommendations