Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 106, Issue 1, pp 71–80 | Cite as

Thermal stability of 2,2-Diaryl/dialkyl-4,4,5,5-tetraaryl-1,3-dioxa-2-siloles

  • B. A. Howell
  • Y.-J. Cho
Article
  • 125 Downloads

Abstract

Fully substituted 1,3-dioxa-2-siloles contain a strained carbon–carbon bond that will undergo thermolysis at modest temperatures to generate a diradical capable of initiating vinyl polymerization. If the substituents contain flame-retarding moieties, e.g., halogen or phophorus-containing groups, the use of such compounds as initiators serves to incorporate a flame-retarding unit into the polymer mainchain. Both 2,2-dialkyl- and 2,2-diaryl-4,4,5,5-tetra(3,5-dibromophenyl)-1,3-dioxa-2-siloles may be prepared from the appropriate tetra(bromoaryl)-1,2-ethanediol and are obtained as white solids. Thermal decomosition (thermogravimetry) of these materials occurs in two stages. Initial decomposition is observed at about 250 °C and corresponds to the loss of nearly half of the initial sample mass.

Keywords

Thermally-labile carbon–carbon bonds Dioxaheterocycles Polymerization initiators Radical pair decomposition 

References

  1. 1.
    Weil ED. Flame retardancy, encyclopedia of polymer science and tecnology. 3rd ed. In: Mark HF, editor. vol 10. New York: John Wiley and Sons Inc; 2004. pp. 21–54.Google Scholar
  2. 2.
    Pettigrew A. Halogenated flame retardants, encyclopedia of polymer science and tecnology. 4th ed. In: Kroschwitz JI, Howe-Grant M, editors. vol 10. New York: John Wiley and Sons Inc; 1993. pp. 954–976.Google Scholar
  3. 3.
    Alace M, Wenning RJ. The significance of brominated flame retardants in the environment: current understanding, issues and challenges. Chemosphere. 2002;46:579–82.CrossRefGoogle Scholar
  4. 4.
    Birnbaum LS, Staskal DF. Brominated flame retardants: cause for cancer? Environ Health Perspect. 2004;112:9–17.CrossRefGoogle Scholar
  5. 5.
    Mind, disrupted: polybrominated diphenyl ethers (PBDEs). Alaska Community Action on Toxics; 2009.Google Scholar
  6. 6.
    Pakalin S, Cole T, Steinkellner J, Nicoles R, Tissier C, Munn, Eisenreich S. Review of production processes of decabromodiphenyl ether (Decabde) used in polymeric applications in electrical and electronic equipment and assessment of Decabde. European Chemicals Bureau, Institute for Health and Consumer Protection, Joint Research Center, European Commission January; 2007.Google Scholar
  7. 7.
    European union risk assesment report: bis(pentabromophenyl) ether. European Chemicals Bureau, Institute for Health and Consumer Protection, Joint Research Center, European Commission 2002;CAS No. 1163-19-5.Google Scholar
  8. 8.
    European union risk assesment report: bis(pentabromophenyl) ether. European Chemicals Bureau, Institute for Health and Consumer Protection, Joint Research Center, European Commission 2002;EINECS No. 214-604-9.Google Scholar
  9. 9.
    Kierkegaard A, Asplund L, DeWit CA, McLachlan MS, Thomas GO, Sweetman AJ, Jones KC. Fate of higher brominated PBDEs in lactating cows. Environ Sci Technol. 2007;41:417–23.CrossRefGoogle Scholar
  10. 10.
    Wu N, Herrmann T, Paepke D, Tickner J, Hale R, Harvey E, LaGuardia M, McClean MD, Webster TF. Human exposure to PBDEs: associations of PBDE body burdens with food consumption and house dust concentrations. Environ Sci Technol. 2007;41:1584–9.CrossRefGoogle Scholar
  11. 11.
    Sjodin A, Wong L-Y, Jones RS, Park A, Zhang Y, Hodge C, Dipietro E, McClure C, Turner W, Needham LL, Patterson DG Jr. Serum concentrations of polybrominated diphenyl ethers (PBDEs) and polybrominated biphenyls (PBB) in the United States population: 2003–2004. Environ Sci Technol. 2008;42:1377–84.CrossRefGoogle Scholar
  12. 12.
    Lorber M. Exposure of Americans to polybrominated diphenyl ethers. J Expo Sci Environ Epidemiol. 2008;18:2.CrossRefGoogle Scholar
  13. 13.
    Stapleton HM, Kelly SM, Allen JG, McClean MD, Webster TF. Measurement of polybrominated diphenyl ethers on hand wipes: estimating exposure from hand-to mouth contact. Environ Sci Technol. 2008;42:3329–34.CrossRefGoogle Scholar
  14. 14.
    Darnerud PD. Brominated flame retardants as possible endocrine disrupters. Int J Androl. 2008;31:152.CrossRefGoogle Scholar
  15. 15.
    Bloom M, Spliethoff H, Vena J, Shaver S, Addink R, Eadon G. Environmental exposure to PBDEs and thyroid function among New York Anglers. Environ Toxicol Pharm. 2008;25:386–92.CrossRefGoogle Scholar
  16. 16.
    Johnson-Restrepo B, Kannan K. An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States. Chemosphere. 2009;76:542–8.CrossRefGoogle Scholar
  17. 17.
    Herbstman JB, Sjodin A, Kurzon M, Lederman SA, Jones RS, Rauth V, Needham LL, Tang D, Niedzwiecki M, Wang RY, Perera F. Prenatal exposure to PBDEs and neurodevelopment. Environ Health Perspect. 2010;118:712–9.CrossRefGoogle Scholar
  18. 18.
    Harley KG, Marks AM, Chevrier J, Bradman A, Sjodin A, Eskenaz B. PBDE concentrations in woman’s serum and fecundability. Environ Health Perspect. 2010;118:699–704.CrossRefGoogle Scholar
  19. 19.
    Johnson PI, Stapleton HM, Sjodin A, Meeker JD. Relationships between polybrominated diphenyl ether concentrations in house dust and serum. Environ Sci Tecnol 2010. doi  10.1021/es100697g.
  20. 20.
    Alaee M, Arias P, Sjodin A, Bergmann A. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int. 2003;29:683–9.CrossRefGoogle Scholar
  21. 21.
    Hites RA. Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environ Sci Technol. 2004;38:945–56.CrossRefGoogle Scholar
  22. 22.
    Hess G. Industry to phase out decaDBE. Chem Eng News 2009;87(51).Google Scholar
  23. 23.
    Hess G. Industry drops flame retardant Chem Eng News 2010;88(1):10.Google Scholar
  24. 24.
    Hull JW Jr, Kruper WJ, Rowlande JC. Extruded polymer foams containing esters of a sugar and a brominated fatty acid as a flame retardant additive. Patent WO2010051163; 2010.Google Scholar
  25. 25.
    Howell BA, Feng ZR, Cho YJ. Dioxaheteroatom cyclics as initiators for radical polymerization. Macromol Symp. 2010;297:38–42.Google Scholar
  26. 26.
    Crivello V, Lee JL, Conlon DA. Cyclic silyl pinacol ethers. A new class of multifunctional free radical initiators. Polym Bull. 1986;16(2–3):95–102.CrossRefGoogle Scholar
  27. 27.
    Howell BA, Cho YJ. Thermal decomposition of 2, 4, 4, 5, 5-pentaphenyl-1, 3, 2-dioxaphospholane. J Therm Anal Calorim. 2010;102:517–21.CrossRefGoogle Scholar
  28. 28.
    Padmakumar RR, Smithhisler DJ, Desai SR, Ross CR, Stezowski JJ. Synthesis of [1.1.1.1]metacyclophane macrocycle. J Org Chem. 1994;59:7701–3.CrossRefGoogle Scholar
  29. 29.
    Piancatelli G, Scettri A, D’Auria M. Pyridinium chlorochromate: a versatile oxidant in organic synthesis. Synthesis. 1982;4:245–58.CrossRefGoogle Scholar
  30. 30.
    Hekmatshoar R, Yavari I, Beheshtiha YS, Heravi MM. Reductive coupling of carbonyl compounds to pinacols with zinc in THF-saturated aqueous ammonium chloride. Monat Chem. 2001;132(6):689–91.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Department of Chemistry, Center for Applications in Polymer ScienceCentral Michigan UniversityMount PleasantUSA

Personalised recommendations