Journal of Thermal Analysis and Calorimetry

, Volume 106, Issue 3, pp 819–824 | Cite as

Polymorphic screen and drug–excipient compatibility studies of the antichagasic benznidazole

  • Flávia Pires Maximiano
  • Kátia Monteiro Novack
  • Maria Terezinha Bahia
  • Lívia Lira de Sá-Barreto
  • Marcílio Sérgio Soares da Cunha-Filho


The purpose of this study was to investigate the polymorphism and compatibility of benznidazole (BNZ), a drug used in the treatment of Chagas disease. This drug was subjected to a polymorphic screen using a number of solvents and precipitation procedures to explore the possible existence of different crystal structures of BNZ. The compatibility of BNZ with selected pharmaceutical excipients was evaluated in binary mixtures, in a ratio of 1:1 (w/w). These results were then analyzed with a variety of techniques, including differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray powder diffractometry. No polymorphic forms of BNZ were detected despite some observed changes in the DSC profile. The thermal data indicate interaction of the drug with excipients hydroxyethylcellulose, polyethylene glycol, and hydroxypropyl-β-cyclodextrin. Additional studies using infrared spectroscopy confirm the incompatibility of BNZ with only the polyethylene glycol. This excipient should not be used in the development of solid dosage forms containing BNZ.


Benznidazole Compatibility Differential scanning calorimetry Fourier transform infrared spectroscopy Polymorphism X-ray powder diffractometry 



The authors are thankful to LAFEPE, Brazil and Professor José Lamartine Soares Sobrinho, Universidade Federal do Piaui, Brazil, for their charitable donation of the BNZ drug used in our studies. This study was supported by CNPq, Brazil Project number 472134/2008-6. The authors are also thankful for generous help of gift samples of diluents received from Colorcon, Brazil.


  1. 1.
    Coura JR, De Castro SL. A critical review on chagas disease chemotherapy. Mem Inst Oswaldo Cruz. 2002;97:3–24.CrossRefGoogle Scholar
  2. 2.
    Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol. 2003;19:495–501.CrossRefGoogle Scholar
  3. 3.
    Caldas IS, Talvani A, Caldas S, Carneiro CM, de Lana M, da Matta Guedes PM, Bahia MT. Benznidazole therapy during acute phase of Chagas disease reduces parasite load but does not prevent chronic cardiac lesions. Parasitol Res. 2008;103:413–21.CrossRefGoogle Scholar
  4. 4.
    Urbina JA. Ergosterol biosynthesis and drug development for Chagas disease. Mem Inst Oswaldo Cruz. 2009;104:311–8.CrossRefGoogle Scholar
  5. 5.
    Raaflaub J. Multiple-dose kinetics of the trypanosomicide benznidazole in man. Arzneimittelforschung. 1980;30:2192–4.Google Scholar
  6. 6.
    Raaflaub J, Ziegler WH. Single-dose pharmacokinetics of the trypanosomicide benznidazole in man. Arzneimittelforschung. 1979;29:1611–4.Google Scholar
  7. 7.
    Workman P, White RA, Walton MI, Owen LN, Twentyman PR. Preclinical pharmacokinetics of benznidazole. Br J Cancer. 1984;50:291–303.CrossRefGoogle Scholar
  8. 8.
    Giron D, Goldbronn C. Use of DSC and TG for identification and quantification of the dosage form. J Thermal Anal Calorim. 1997;48:473–83.CrossRefGoogle Scholar
  9. 9.
    International Conference on Harmonization Q6A Guideline. Specifications for New Drug Substances and Products: Chemical Substances, 1999 October.Google Scholar
  10. 10.
    Bakar MRA, Nagy ZK, Rielly CD. A combined approach of differential scanning calorimetry and hot-stage microscopy with image analysis in the investigation of sulfathiazole polymorphism. J Therm Anal Calorim. 2010;99:609–19.CrossRefGoogle Scholar
  11. 11.
    Jackson K, Young D, Pant S. Drug–excipient interaction and their affect on absorption. Res Focus. 2000;3:336–45.Google Scholar
  12. 12.
    Bruni G, Berbenni V, Milanese C, Girella A, Marini A. Drug–excipient compatibility studies in binary and ternary mixtures by physico-chemical techniques. J Therm Anal Calorim. 2009. doi: 10.1007/s10973-009-0382-z.
  13. 13.
    Cunha-Filho MSS, Martínez-Pacheco R, Landín M. Compatibility of the antitumoral beta-lapachone with different solid dosage forms excipients. J Pharm Biomed Anal. 2007;45:590–8.CrossRefGoogle Scholar
  14. 14.
    Freire FD, Aragão CFS, Moura TFAL, Raffin FN. Compatibility study between chlorpropamide and excipients in their physical mixtures. J Therm Anal Calorim. 2009;97:355–7.CrossRefGoogle Scholar
  15. 15.
    Chawla G, Gupta P, Thilagavathi R, Chakraborti AK, Bansal AK. Characterization of solid-state forms of celecoxib. Eur J Pharm Sci. 2003;20:305–17.CrossRefGoogle Scholar
  16. 16.
    Soares-Sobrinho JL, Cunha-Filho MSS, Rolim Neto PJ, Torres-Labandeira JJ, Dacunha-Marinho B. Benznidazole. Acta Cryst. 2008;E64:o634.Google Scholar
  17. 17.
    Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329:1–11.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Flávia Pires Maximiano
    • 1
  • Kátia Monteiro Novack
    • 2
  • Maria Terezinha Bahia
    • 3
  • Lívia Lira de Sá-Barreto
    • 4
  • Marcílio Sérgio Soares da Cunha-Filho
    • 4
  1. 1.Escola de FarmáciaUniversidade Federal de Ouro Preto (UFOP)Ouro PretoBrazil
  2. 2.Departamento de Química, Instituto de Ciências Exatas e BiológicasUniversidade Federal de Ouro Preto (UFOP)Ouro PretoBrazil
  3. 3.Instituto de Ciências Exatas e BiológicasUniversidade Federal de Ouro Preto (UFOP)Ouro PretoBrazil
  4. 4.Instituto de Ciências da SaúdeCampus Universitário de Sinop, Universidade Federal do Mato Grosso (UFMT)SinopBrazil

Personalised recommendations