Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 105, Issue 1, pp 229–238 | Cite as

Growth and thermal kinetics of pure and cadmium doped barium phosphate single crystal

  • Shivani Suri
  • K. K. Bamzai
  • Vishal Singh
Article

Abstract

Non-isothermal kinetic parameter of pure and cadmium-doped barium phosphate single crystal grown by room temperature solution technique have been investigated. Single crystal X-ray diffraction establishes grown crystal to be orthorhombic in nature. Scanning electron microscopy supplemented with energy dispersive X-ray analysis was used to study the surface features and to find the exact stoichiometric composition of the grown crystal. Fourier transform infrared spectroscopy studies confirm the presence of various functional groups. The effect of cadmium doping on pure barium phosphate single crystal was studied using thermogravimetry analysis. Thermogravimetry studies shows that the pure crystal was stable up to a temperature of 330 °C whereas doped crystal was stable up to a temperature of 240 °C, i.e., pure crystals were more stable than doped ones. Various solid-state reaction kinetics, i.e., activation energy (E a), frequency factor (Z), and entropy (ΔS*) was calculated out to find the mechanism of thermal decomposition at different stages for pure and cadmium doped barium phosphate.

Keywords

Transition metal compound Crystal growth Phase transitions thermogravimety Differential thermal analysis Differential scanning calorimetry 

Notes

Acknowledgements

Authors are thankful to Prof. Rajnikant for carrying out single crystal X-ray studies using Single Crystal Oxford X-ray Diffractometer, sanctioned as National Facility by DST, India to the Department of Physics, University of Jammu.

References

  1. 1.
    Dinamani M, Kamath PV. Electrochemical synthesis of metal phosphates by cathodic reduction. Mat Res Bull. 2001;36:2043–50.CrossRefGoogle Scholar
  2. 2.
    Sales BC, Chokousmakos BC, Boatner LA, Ramney JO. Structural investigation of the amorphous phases produced by heating crystalline MgHPO4.3H2O. J Cryst Sol. 1993;159:121–39.CrossRefGoogle Scholar
  3. 3.
    Zaitseva N, Carman L. Rapid growth of KDP type crystals. Progr Cryst Growth Character Mater. 2001;43:1–118.CrossRefGoogle Scholar
  4. 4.
    Devries SA, Goedtkindt P, Huisman WJ, Zwanenburg MJ, Feidenhans R, Bennett SL, Smilgus DM, Stierle A, De Yoreo JJ, Van Enckevort WJP, Bennema P, Vlieg E. X-Ray diffraction studies of potassium dihydrogen phosphate (KDP) crystal surfaces. J Cryst Growth. 1999;205:202–14.CrossRefGoogle Scholar
  5. 5.
    Henisch HK. Crystal Growth in Gels. New York: Dover; 1996.Google Scholar
  6. 6.
    Blank Z, Speyer DM, Brenner W, Okomoto Y. Growth of single crystals of silver halides in silica gel at near ambient temperature. Nature. 1967;216:1103.CrossRefGoogle Scholar
  7. 7.
    Barta C, Zemlicka J, Rene V. Growth of CaCO3 and CaSO4.2H2O crystals in gels. J Cryst Growth. 1971;10:158–62.CrossRefGoogle Scholar
  8. 8.
    Koelmans H, Cox APM. Luminescence of modified Tin-activated strontium orthophosphate. J Electro Chem Soc. 1957;104:442–5.CrossRefGoogle Scholar
  9. 9.
    Dishovshy N, Bonchev-Mladenova Z. Doping of gel grown Ag2SeO4 single crystal. J Cryst Growth. 1981;51:147–8.CrossRefGoogle Scholar
  10. 10.
    Dennis J, Henisch HK. Nucleation and growth of crystals in gels. J Electro Chem Soc. 1967;114:263–6.CrossRefGoogle Scholar
  11. 11.
    Gits S, Robert MC, Lefaucheux L. Doping effect on the crystalline quality of ADP doped chromium: 1. Composition of solution grown and gel grown crystals. J Cryst Growth. 1985;71:203–8.CrossRefGoogle Scholar
  12. 12.
    Kanchana G, Suresh P, Sundaramoorthi P, Kalainathan S, Jeyanthi GP. Growth of strontium chromium magnesium hydrogen phosphate (SrCrMHP) crystals in silica gel medium at different growth environments and nucleation reduction strategy. J Mineral Mater Character Eng. 2008;7:215–31.Google Scholar
  13. 13.
    Kanchana G, Sundaramoorthi P, Jeyanthi G. P. Growth and characterization studies of strontium calcium magnesium hydrogen phosphate (SrCaMHP) crystals in silica gel medium and laser induced nucleation reduction strategy. J Mineral Mater Character Eng. 2009;8:37–45.Google Scholar
  14. 14.
    Jaw KS. Preparation of a biphasic calcium phosphate from Ca(H2PO4)2 2H2O and CaCO3. J Therm Anal Calorim. 2006;83:145.CrossRefGoogle Scholar
  15. 15.
    Madhurambal G, Subha R, Mojumdar SC. Crystallization and thermal characterization of calcium hydrogen phosphate dihydrate crystals. J Therm Anal Calorim. 2009;96:73–6.CrossRefGoogle Scholar
  16. 16.
    Samuel VM, Unikrishnan NV, Ittyachen MA. Thermal characterization of pure and neodymium doped calcium hydrogen phosphate single crystals. J Therm Anal Calorim. 2009;96:917–21.CrossRefGoogle Scholar
  17. 17.
    Varshney KG, Agrawal A, Mojumdar SC. Pyridine based thorium (iv) phosphate hybrid fibrous ion exchanger synthesis, characterization and thermal behaviour. J Therm Anal Calorim. 2007;90:721–4.CrossRefGoogle Scholar
  18. 18.
    Varshney KG, Agrawal A, Mojumdar SC. Pyridine based cerium (iv) phosphate hybrid fibrous ion exchanger synthesis, characterization and thermal behaviour. J Therm Anal Calorim. 2007;90:731–4.CrossRefGoogle Scholar
  19. 19.
    Rathore HS, Varshney G, Mojumdar SC, Saleh MT. Synthesis, characterization and fungicidal activity of zinc diethyldithiocarbonate and phosphate. J Therm Anal Calorim. 2007;90:681–6.CrossRefGoogle Scholar
  20. 20.
    Varshney KG, Agrawal A, Mojumdar SC. Pectin based cerium (iv) and thorium (iv) phosphates as novel hybrid fibrous ion exchangers synthesis, characterization and thermal behaviour. J Therm Anal Calorim. 2005;81:183–9.CrossRefGoogle Scholar
  21. 21.
    Kanchana G, Sundaramoorthi P. In vitro studies of calcium mixed minerals growth in different growth faces and semiconductor laser induced suppression of nuclei and strategy. Bull Mater Sci. 2008;31:981–5.CrossRefGoogle Scholar
  22. 22.
    Sundaramoorthi P, Kanchana G, Kalainathan S. Laser irradiation of BaMgHPO4 crystals in silica gel media at different growth environments (nucleation reduction strategy) and its characterization studies. Spectrochemi Acta A. 2008;69:1154–9.CrossRefGoogle Scholar
  23. 23.
    Hebber KC, Dharma Prakash SM, Mohan Rao P. Physico–chemical characterization of BaHPO4. Bull Mater Sci. 1991;14:1219–23.CrossRefGoogle Scholar
  24. 24.
    Pan DY, Yuan DR, Sun HQ, Guo SY, Wang XQ, Duan XL, Luan CN, Li ZF. Solubility and crystallization of BaHPO4 crystals. Cryst Res Technol. 2006;41:236–8.CrossRefGoogle Scholar
  25. 25.
    Sundaramoorthi P, Kalainathan S. Crystal growth of some renal stones constituents: I. In vitro crystallization of trace elements and its characterization studies. J Mineral Mater Character Eng. 2007;6:17–24.Google Scholar
  26. 26.
    Joshi SJ, Parekh BB, Vohra KD, Joshi MJ. Growth and characterization of gel grown pure and mixed levo–tartrate crystals. Bull Mater Sci. 2006;29:307–12.CrossRefGoogle Scholar
  27. 27.
    Sestak J. Thermal analysis. In: H. G. Wiedemann (ed) Proceedings of the third international conference on thermal analysis, 1971; 2:24.Google Scholar
  28. 28.
    Horowitz HH, Metzger G. A new analysis of thermogravimetric traces. Anal Chem. 1963;35:1464–8.CrossRefGoogle Scholar
  29. 29.
    Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68.CrossRefGoogle Scholar
  30. 30.
    Piloyan GO, Ryabchikov ID, Novikova OS. Determination of activation energies of chemical reactions by differential thermal analysis. Nature. 1966;212:1229.CrossRefGoogle Scholar
  31. 31.
    Gao ZM, Amasaki I, Nakada M. A description of kinetics of thermal decomposition of calcium oxalate monohydrate by means of the accommodated Rn model. Thermochim Acta. 2002;385:95–103.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Department of Physics and Electronics, Crystal Growth and Materials Research LaboratoryUniversity of JammuJammuIndia

Personalised recommendations