Journal of Thermal Analysis and Calorimetry

, Volume 104, Issue 3, pp 879–883 | Cite as

Synthesis and characterization of Ni0.6Zn0.4Fe2O4 nano-particles obtained by auto catalytic thermal decomposition of carboxylato-hydrazinate complex

  • U. B. Gawas
  • V. M. S. Verenkar
  • S. C. Mojumdar


Ni0.6Zn0.4Fe2O4 nano-particles have been synthesized by self-propagating auto-combustion of nickel zinc ferrous fumarato-hydrazinate complex. The precursor complex has been characterized by chemical analysis, IR, AAS, thermal analysis and isothermal mass loss studies. The precursor on ignition undergoes self-propagating auto combustion to give Ni0.6Zn0.4Fe2O4. The X-ray diffraction studies confirmed the single phase formation of nano-size ‘as synthesized’ Ni0.6Zn0.4Fe2O4. TEM observation showed the average particle size to be 20 nm. Infrared and magnetization studies were also carried out on the ‘as synthesized’ Ni0.6Zn0.4Fe2O4. The lower value of saturation magnetization and higher Curie temperature of ‘as synthesized’ ferrite also hint at the nano size nature.


Nano-particles TG DSC FTIR XRD TEM 


  1. 1.
    Komarneni S, Fregeau E, Breval E, Roy R. Hydrothermal preparation of ultrafine ferrites and their sintering. J Am Ceram Soc.1988;71(1)C:26–8.Google Scholar
  2. 2.
    Shrotri JJ, Kulkarni SD, Deshpande CE, Date SK. Low temperature synthesis of Ni–Zn ferrite powder and its characterization. Mater Lett. 1996;27:293–6.CrossRefGoogle Scholar
  3. 3.
    Jadhav SS, Shirsath SE, Toksha BG, Shukla SJ, Jadhav KM. Effect of cation proportion on the structural and magnetic properties of Ni–Zn Ferrites nano-size particles prepared by co-precipitation technique. Chin J Chem Phys. 2008;21(4):381–6.CrossRefGoogle Scholar
  4. 4.
    Bueno AR, Gregori ML, Nobrega MCS. Effect of Mn substitution on the microstructure and magnetic properties of Ni0.50−xZn0.50−xMn2xFe2O4 ferrite prepared by the citrate-nitrate precursor method. Mater Chem Phys. 2007;105:229–33.CrossRefGoogle Scholar
  5. 5.
    Tartaj P, Morales MDP, Veintemillas-Verdaguer S, Gonzáalez-Carreño T, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D. 2003;36R:182–97.CrossRefGoogle Scholar
  6. 6.
    Hankare PP, Kamle PD, Kadam MR, Rane KS, Vasambekar PN. Effect of sintering temperature on the properties of Cu-Co ferrites prepared by oxalate precipitation method. Mater Lett. 2007;61:2769–71.CrossRefGoogle Scholar
  7. 7.
    Randhawa BS, Kaur M, Gandotra K. Mössbauer studies on the thermolysis of manganese tris(malonato)ferrate(III)hexahydrate. J Radioanal Nucl Chem. 2006;269(3):69–74.CrossRefGoogle Scholar
  8. 8.
    Parvatheeawara Rao B, Mahesh Kumar A, Rao KH, Murthy YLN, Caltun OF, Dumitru I, Spinu L. Synthesis and magnetic studies of Ni–Zn ferrite nanoparticles. J Optoelectron Adv Mater. 2006;8(5):1703–5.Google Scholar
  9. 9.
    Verma A, Goel TC, Mendiratta RG, Kishan P. Magnetic properties of nickel–zinc ferrites prepared by the citrate precursor method. J Magn Magn Mater. 2000;208(1):13–9.CrossRefGoogle Scholar
  10. 10.
    Zahi S, Hashim M, Daud AR. Synthesis, magnetic properties and microstructure of Ni–Zn ferrite by sol–gel technique. J Magn Magn Mater. 2007;308(2):177–82.CrossRefGoogle Scholar
  11. 11.
    Costa ACFM, Tortella E, Morelli MR, Kiminami RHGA. Synthesis, microstructure and magnetic properties of Ni–Zn ferrites. J Magn Magn Mater. 2003;256(1–3):174–82.CrossRefGoogle Scholar
  12. 12.
    Kikukawa N, Takemori M, Nagano Y, Sagasawa M, Kobayashi S. Synthesis and magnetic properties of nanostructured spinel ferrites using a glycine–nitrate process. J Magn Magn Mater. 2004;284:206–14.CrossRefGoogle Scholar
  13. 13.
    Priyadharsini P, Pradeep A, Chandrasekaran G. Novel combustion route of synthesis and characterization of nanocrystalline mixed ferrites of Ni–Zn. J Magn Magn Mater. 2009;321(12):03–1898.CrossRefGoogle Scholar
  14. 14.
    Mangalaraja RV, Ananthakumar S, Manohar P, Gnanam FD, Awano M. Microwave-flash combustion synthesis of Ni0.8Zn0.2Fe2O4 and its dielectric characterization. Mater Lett. 2004;58(10):1593–6.CrossRefGoogle Scholar
  15. 15.
    Carp O, Patron L, Pascu G, Mindru L, Stanica N. Thermal investigations of nickel–zinc ferrites formation from malate coordination compounds. J Therm Anal Calorim. 2006;84(2):391–4.CrossRefGoogle Scholar
  16. 16.
    Gajapathy D, Patil KC, Pai Vernekar VR. Low temperature ferrite formation using metal oxalate hydrazinate precursor. Mater Res Bull. 1982;17(1):29–32.CrossRefGoogle Scholar
  17. 17.
    Randhawa BS, Kaur S, Bassi PS. Thermal decomposition of strontium and barium malonates. J Therm Anal Calorim. 1999;55(3):789–96.CrossRefGoogle Scholar
  18. 18.
    Mahesh GV, Patil KC. Thermal reactivity of metal acetate hydrazinates. Thermochim Acta. 1986;99(1):153–8.CrossRefGoogle Scholar
  19. 19.
    Randhawa BS, Dosanjh HS, Kumar N. Synthesis of potassium ferrite by precursor and combustion methods a comparative study. J Therm Anal Calorim. 1999;95(1):75–80.CrossRefGoogle Scholar
  20. 20.
    Sivasankar BN. Cobalt(II), nickel(II) and zinc(II) dicarboxylate complexes with hydrazine as bridged ligand characterization and thermal degradation. J Therm Anal Calorim. 2006;86(2):385–92.CrossRefGoogle Scholar
  21. 21.
    Sivasankar BN, Govindarajan S. Studies on bis(hydrazine) metal malonates and succinates. Synth React Inorg Met-Org Chem. 1994;24(9):1573–82.CrossRefGoogle Scholar
  22. 22.
    Sivasankar BN, Govindarajan S. Hydrazine mixed metal malonates—new precursors for metal cobaltites. Mater Res Bull. 1996;31(1):47–54.CrossRefGoogle Scholar
  23. 23.
    Verenkar VMS, Porob RA, Sawant SY, Kannan KR. Synthesis, characterisation and thermal analysis of nickel manganese succinato-hydrazinate. In: Singh Mudher KD, Bharadwaj S, Ravindran PV, Sali SK, Venugopal V, editors. Proceedings of the 14th national symposium on thermal analysis, Thermans. Vadodara: Indian Thermal Analysis Society; 2004. p. 335–7.Google Scholar
  24. 24.
    Sivasankar BN, Govindrajan S. Acetate and malonate complexes of cobalt(II), nickel(II) and zinc(II) with hydrazinium cation: preparation, spectral and thermal studies. J Therm Anal. 1997;48(6):1401–13.CrossRefGoogle Scholar
  25. 25.
    Rane KS, Verenkar VMS. Synthesis of ferrite grade γ-Fe2O3. Bull Mater Sci. 2001;24(1):39–45.CrossRefGoogle Scholar
  26. 26.
    Randhawa BS, Kaur M. A comparative study on the thermal decomposition of some transition metal maleates and fumarates. J Therm Anal Calorim. 2007;89(1):251–5.CrossRefGoogle Scholar
  27. 27.
    Khalil I, Petit-Ramel MM. Polynuclear complexes quantitative and qualitative study of copper-yttrium malate and copper-uranyl malate. J Inorg Nucl Chem. 1979;41(5):711–6.CrossRefGoogle Scholar
  28. 28.
    Gawas UB, Mojumdar SC, Verenkar VMS. Ni0.5Mn0.1Zn0.4Fe2(C4H2O4)3·6N2H4 precursor Ni0.5Mn0.1Zn0.4Fe2O4 nanoparticles preparation, IR spectral, XRD, SEM-EDS and thermal analysis. J Therm Anal Calorim. 2009;96(1):49–52.CrossRefGoogle Scholar
  29. 29.
    Gonsalves LR, Verenkar VMS, Mojumdar SC. Preparation and characterization of Co0.5Zn0.5Fe2(C4H2O4)3·6N2H4: a precursor to prepare Co0.5Zn0.5Fe2O4 nanoparticles. J Therm Anal Calorim. 2009;96(1):53–7.CrossRefGoogle Scholar
  30. 30.
    More A, Verenkar VMS, Mojumdar SC. Nickel ferrite nanoparticles synthesis from novel fumarato-hydrazinate precursor. J Therm Anal Calorim. 2008;94(1):63–7.CrossRefGoogle Scholar
  31. 31.
    Sawant SY, Verenkar VMS, Mojumdar SC. Preparation, thermal, XRD, chemical and FTIR spectral analysis of NiMn2O4 nanoparticles and respective precursor. J Therm Anal Calorim. 2007;90(3):669–72.CrossRefGoogle Scholar
  32. 32.
    Porob RA, Khan SZ, Mojumdar SC, Verenkar VMS. Synthesis, TG, DSC and infrared spectral study of NiMn2(C4H4O4)3·6N2H4: a precursor for NiMn2O4 nanoparticles. J Therm Anal Calorim. 2006;86(3):605–8.CrossRefGoogle Scholar
  33. 33.
    Gawas U, Bhattacharya S, More A, Verenkar VMS. Synthesis and characterization of Ni0.6Zn0.4Fe2O4 obtained by self-propagating auto-combustion of a novel precursor. In: Lokhande CD, editor. Proceedings of the international conference on advanced materials and applications. Kolhapur, India; 2007. p. 86–93.Google Scholar
  34. 34.
    Gawas UB, Verenkar VMS. Synthesis, characterizations, thermal and infrared spectral studies of manganese nickel zinc ferrous fumarato-hydrazinate complex. In: Kalsi PC, Pai RV, Pai MR, Bharadwaj SR, Venugopal V, editors. Proceedings of the 17th national symposium on thermal analysis, Thermans. Haryana: Indian Thermal Analysis Society; 2010. p. 174–6.Google Scholar
  35. 35.
    Vogel’s, Text book of quantitative inorganic analysis (revised by Jeffery GH, Bassettv, Mendham J and Denney RC), 5th edn. London: Longman; 1989. p. 402.Google Scholar
  36. 36.
    Likhite SD, Radhakrishnamurthy C, Sahasrabudhe PW. Alternating current electromagnet type hysteresis loop tracer for minerals and rocks. Rev Sci Instrum. 1965;36(11):1558–60.CrossRefGoogle Scholar
  37. 37.
    Likhite SD, Radhakrishnamurthy C. Initial susceptibility and constricted Rayleigh loops of some basalts. Curr Sci. 1966;35:534–6.Google Scholar
  38. 38.
    Braibanti A, Dallavalle F, Pellinghelli MA, Leporati E. The nitrogen–nitrogen stretching band in hydrazine derivatives and complexes. Inorg. Chem. 1968;7:1430–3.CrossRefGoogle Scholar
  39. 39.
    Tsuchiya R, Yonemura M, Uehera A, Kyuno E. Derivatographic studies on transition metal complexes. XIII. Thermal decomposition of [Ni(N2H4)6]X2 complexes. Bull Chem Soc Jpn. 1974;47(3):660–4.CrossRefGoogle Scholar
  40. 40.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds part B. 6th ed. New York: John Wiley; 1978. p. 13.Google Scholar
  41. 41.
    Waldron RD. Infrared spectra of ferrites. Phys Rev. 1955;99:1727–35.CrossRefGoogle Scholar
  42. 42.
    Akther Hossain AKM, Mahmud ST, Seki M, Kawai T, Tabata H. Structural, electrical transport, and magnetic properties of Ni1−xZnxFe2O4. J Magn Magn Mater. 2007;312(1):210–9.CrossRefGoogle Scholar
  43. 43.
    Mangalaraja RV, Ananthakumar S, Manohar P, Gnanam FD, Awano M. Direct current resistivity studies of Ni1−xZnxFe2O4 prepared through flash combustion and citrate-gel decomposition techniques. Mater Lett. 2003;57(18):2662–5.CrossRefGoogle Scholar
  44. 44.
    Coey JMD, Khalafalla D. Superparamagnetic γ-Fe2O3. Phys Stat Sol (A). 1972;11(1):229–41.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • U. B. Gawas
    • 1
  • V. M. S. Verenkar
    • 1
  • S. C. Mojumdar
    • 2
    • 3
  1. 1.Department of ChemistryGoa UniversityGoaIndia
  2. 2.Department of Chemical Technologies and Environment, Faculty of Industrial TechnologiesTrencin University of A. DubcekPuchovSlovakia
  3. 3.University of New BrunswickSaint JohnCanada

Personalised recommendations