Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 106, Issue 3, pp 839–844 | Cite as

Some studies on the phase formation and kinetics in TiO2 containing lithium aluminum silicate glasses nucleated by P2O5

  • A. Ananthanarayanan
  • A. Dixit
  • R. K. Lenka
  • R. D. Purohit
  • V. K. Shrikhande
  • G. P. Kothiyal
Article

Abstract

Lithium aluminum silicate (LAS) glasses of compositions (wt%) 10.6Li2O–71.7SiO2–7.1Al2O3–4.9K2O–3.2B2O3–1.25P2O5–1.25TiO2 were prepared by the melt quench technique. Crystallization kinetics was investigated by the method of Kissinger and Augis–Bennett using differential thermal analysis (DTA). Based on the DTA data, glass ceramics were prepared by single-, two-, and three-step heat treatment schedules. The interdependence of different phases formed, microstructure, thermal expansion coefficient (TEC) and microhardness (MH) was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermo-mechanical analysis (TMA), and microhardness (MH) measurements. Crystallization kinetics revealed that Li2SiO3 is the kinetically favored phase with activation energy of 91.10 kJ/mol. An Avrami exponent of n = 3.33 indicated the dominance of bulk crystallization. Based upon the formation of phases, it was observed that the two-stage heat treatment results in highest TEC glass ceramics. The single-step heat treatment yielded glass ceramics with the highest MH.

Keywords

Amorphous materials Thermal analysis Electron microscopy X-ray diffraction Thermal expansion 

Notes

Acknowledgements

The authors wish to thank Dr. J. V. Yakhmi and Mr. V. K. Handu for their support and encouragement. Thanks are also due to Dr. Shovit Bhattacharya and Mr. Thinaharan for SEM measurements and Dr. A. K. Tyagi for providing XRD facility. They would like to acknowledge the help received from M/s Arjun Sarkar and Rakesh Kumar during glass preparation. Support received from the IFCPAR vide project number 4008-1 is gratefully acknowledged. One of the authors (AA) would like to thank the DAE for awarding him a fellowship.

References

  1. 1.
    Macmillan PW. Glass-ceramics. New York: Academic Press; 1977.Google Scholar
  2. 2.
    Khater GA, Idris MH. Role of TiO2 and ZrO2 on the crystallizing phases and microstructure in Li,Ba aluminosilicate glass. Ceram Int. 2007;33:233–8.CrossRefGoogle Scholar
  3. 3.
    Riello P, Canton P, Comelato N, Polizi S, Verità M, Fagherazzi G, Hofmeister H, Hopfe S. Nucleation and crystallization behaviour of glass-ceramic material in the Li2O-Al2O3-SiO2 system of interest for their transparency properties. J Non-Cryst Solids. 2001;288:127–39.CrossRefGoogle Scholar
  4. 4.
    Chatterjee M, Naskar MK. Sol–gel synthesis of lithium aluminum silicate powders: the effect of silica source. Ceram Int. 2006;32:623–32.CrossRefGoogle Scholar
  5. 5.
    James PF. Glass-ceramics: new compositions and uses. J Non-Cryst Solids. 1995;181:1–15.CrossRefGoogle Scholar
  6. 6.
    Tick PA, Borrelli NF, Reaney IM. Relationship between structure and transparency in glass-ceramic materials. Opt Mater. 2008;15:81–91.CrossRefGoogle Scholar
  7. 7.
    Scheidler H, Thurk J. The ceran-top-system®: high tech appliance for the kitchen. In: Low thermal expansion glass-ceramics, 1995.Google Scholar
  8. 8.
    Cheng K. Carbon effects on the crystallization of Li2O-Al2O3-SiO2 glasses. J Non-Cryst Solids. 1998;238:152–7.CrossRefGoogle Scholar
  9. 9.
    Guo X, Yang H, Cao M. Nucleation and crystallization behavior of Li2O–Al2O3–SiO2 system glass–ceramic containing little fluorine and no-fluorine. J Non-Cryst Solids. 2005;351:2133–7.CrossRefGoogle Scholar
  10. 10.
    Guo X, Yang H, Han C, Song F. Crystallization and microstructure of Li2O–Al2O3–SiO2 glass containing complex nucleating agent. Thermochim Acta. 2006;444:201–5.CrossRefGoogle Scholar
  11. 11.
    Hsu JY, Speyer RF. Comparison of the effects of titania and tantalum oxide nucleating agents on the crystallization of Li2O–Al2O3–6SiO2 glasses. J Am Ceram Soc. 1989;72:2334–41.CrossRefGoogle Scholar
  12. 12.
    Hu AM, Liang KM, Zhou F, Wang GL, Weng P. Phase transformation of Li2O-Al2O3-SiO2 glasses with CeO2 addition. Ceram Int. 2005;31:11–4.CrossRefGoogle Scholar
  13. 13.
    Fernandes HR, Tulyaganov DU, Goel A, Ferreira JMF. Structural characterization and thermo-physical properties of glasses in the Li2O-SiO2-Al2O3-K2O system. J Therm Anal Calorim. 2010. doi: 10.1007/510973-010-1049-5.
  14. 14.
    Li Y, Liang K, Xu B, Co J. Crystallization mechanism and microstructure evolution of Li2O-Al2O3-SiO2 glass-ceramic with Ta2O5 as a nucleant. J Therm Anal Calorim. 2009;101:941–8.CrossRefGoogle Scholar
  15. 15.
    Ananthanarayanan A, Sarkar A, Shrikhande VK, Tyagi AK, Kothiyal GP. The effect of TiO2 addition on the crystallization and phase formation in lithium aluminum silicate (LAS) glasses nucleated by P2O5. J Phys Chem Solids. 2008;69:2622–7.CrossRefGoogle Scholar
  16. 16.
    Ananthanarayanan A, Kothiyal GP, Montagne L, Revel B. MAS-NMR investigations of the crystallization behaviour of lithium aluminum silicate (LAS) glasses containing P2O5 and TiO2 nucleants. J Solid State Chem. 2010;183:1416–22.CrossRefGoogle Scholar
  17. 17.
    Ananthanarayanan A, Tyagi AK, Mishra R, Shrikhande VK, Kothiyal GP. Evolution of crystalline phases as a function of composition and dwell time in lithium aluminium silicate glass-ceramics. Phys Chem Glasses: Eur J Glass Sci Technol B. 2008;49:166–73.Google Scholar
  18. 18.
    Sharma BI, Goswami M, Sengupta P, Shrikhande VK, Kale GB, Kothiyal GP. Study on some thermo-physical properties in Li2O-ZnO-SiO2 glass-ceramics. Mater Lett. 2004;58:2423–8.CrossRefGoogle Scholar
  19. 19.
    Yilmaz S, Ozkan OT, Gunay V. Crystallization kinetics of basalt glass. Ceram Int. 1996;22:477–81.CrossRefGoogle Scholar
  20. 20.
    Elder JP. The general applicability of the Kissinger equation in thermal analysis. J Therm Anal Calorim. 1985;30:657–69.CrossRefGoogle Scholar
  21. 21.
    Augis JA, Bennet JE. Calculation of Avrami parameters for heterogeneous solid state reaction using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13:283–92.CrossRefGoogle Scholar
  22. 22.
    Headley TJ, Loehman RJ. Crystallization of a glass-ceramics by epitaxial growth. J Am Ceram Soc. 1984;67:354–61.CrossRefGoogle Scholar
  23. 23.
    Goswami M, Kothiyal GP, Montagne L, Delevoye L. MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content. J Solid State Chem. 2008;181:269–75.CrossRefGoogle Scholar
  24. 24.
    Holland D, Iqbal Y, James P, Lee B. Early stages of crystallisation of lithium disilicate glasses containing P2O5—an NMR study. J Non-Cryst Solids. 1998;232–234:140–6.CrossRefGoogle Scholar
  25. 25.
    Holland W, Appel E, Hoen CVT, Rheinberger V. Studies of crystal phase formations in high-strength lithium disilicate glass–ceramics. J Non-Cryst Solids. 2006;352:4041–50.CrossRefGoogle Scholar
  26. 26.
    Shelby JE. Introduction to glass science and technology. Cambridge: Royal Society of Chemistry; 1997.Google Scholar
  27. 27.
    Albakry M, Guazzato M, Swain MV. Biaxial flexural strength and microstructure changes of two recycled pressable glass-ceramics. J Prosth Dent. 2004;13:141–9.Google Scholar
  28. 28.
    Reeser MK. Phase diagrams for ceramists. Columbus, OH: American Ceramic Society; 1969.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • A. Ananthanarayanan
    • 1
  • A. Dixit
    • 1
  • R. K. Lenka
    • 2
  • R. D. Purohit
    • 2
  • V. K. Shrikhande
    • 1
    • 3
  • G. P. Kothiyal
    • 1
  1. 1.Glass and Advanced Ceramics DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Energy Conversion Materials SectionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Bhabha Atomic Research CentreMumbaiIndia

Personalised recommendations