Journal of Thermal Analysis and Calorimetry

, Volume 104, Issue 1, pp 157–160 | Cite as

Nitric oxide effect on heat production and oxygen consumption of wheat root cells

  • Daniya Rakhmatullina
  • Alexander Alyabyev
  • Tatiana Ogorodnikova
  • Anastasia Ponomareva


The effect of nitric oxide (NO) on heat production and oxygen consumption was studied in excised roots of 5-day-old wheat seedlings grown in CaCl2 solution (2.5 × 10−4 mol/L). Sodium nitroprusside (SNP), NaNO3, NaNO2 were used as NO donors. Incubation of the cut roots (wound stress) in the presence of NO donors led to the decrease of heat production and suppressed oxygen consumption. The increase of potassium (K+) ions exit was observed, pointing to the increase of the plasma membrane permeability and to the disruption of the adaptive processes development in roots in the NaNO2 presence.


Nitric oxide Heat production Microcalorimetry 



The authors gratefully acknowledge of the State support of leading scientific schools of the Russian Federation (grant SS-6992.2010.4).


  1. 1.
    Neil SJ, Desikan R, Hancock JT. Nitric oxide signaling in plants. New Phytol. 2003;159:11–35.CrossRefGoogle Scholar
  2. 2.
    Shapiro A. Nitric oxide signaling in plants. Vitam Horm. 2005;72:339–98.CrossRefGoogle Scholar
  3. 3.
    Wildt J, Kley D, Rockel F, Rockel P, Segschneider H. Emission of NO from several higher plant species. J Geophys Res. 1997;102:5919–27.CrossRefGoogle Scholar
  4. 4.
    Yamasaki H. Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond B. 2000;355:1477–88.CrossRefGoogle Scholar
  5. 5.
    Stöhr C, Stremlau S. Formation and possible role of nitric oxide in plant roots. J Exp Bot. 2006;57:463–70.CrossRefGoogle Scholar
  6. 6.
    Wendehenne D, Durner J, Klessing DF. Nitric oxide a new player in plant signaling and defence responses. Curr Opin Plant Biol. 2004;7:449–55.CrossRefGoogle Scholar
  7. 7.
    Neil S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I. Nitric oxide, stomatal closure and abiotic stress. J Exp Bot. 2008;59:165–76.CrossRefGoogle Scholar
  8. 8.
    Zottini M, Formentin E, Scattolin M, Carimi F, Schiavo F, Terzi M. Nitric oxide affects plant mitochondrial functionality in vivo. FEBS Lett. 2002;515:75–8.CrossRefGoogle Scholar
  9. 9.
    Troc M, Skoczowski A, Baranska M. The influence of sunflower and mustard leaf extracts on the germination of mustard seeds. J Therm Anal Calorim. 2009;95:727–30.CrossRefGoogle Scholar
  10. 10.
    Yan D, Han Y, Wei L, Xiao X. Effect of berberine alkaloids on Bifidobacterium adolescentis growth by microcalorimetry. J Therm Anal Calorim. 2009;95:495–9.CrossRefGoogle Scholar
  11. 11.
    Kong W, Li Z, Xiao X, Zhao Y, Zhang P. Activity of berberine on Shigella dysenteriae investigated by microcalorimetry and multivariate analysis. J Therm Anal Calorim. 2010;102:331–6.CrossRefGoogle Scholar
  12. 12.
    Gordon LK, Rakhmatullina DF, Ogorodnikova TI, Alyabyev AJ, Minibayeva FV, Loseva NL, Mityashina SY. The influence of ascorbic acid on the oxygen consumption and heat production by the cells of wheat seedlings roots with their mitochondrial electron transport chain inhibition at complexes I and III. Thermochim Acta. 2007;458:92–6.CrossRefGoogle Scholar
  13. 13.
    Hansen L, Hopkin M, Griddle R. Plant calorimetry: a window to plant physiology and ecology. Thermochim Acta. 1997;300:183–97.CrossRefGoogle Scholar
  14. 14.
    Kemp R, Guan Y. Determination of reaction energy values for biological pyrite oxidation by calorimetry. Thermochim Acta. 1998;309:63–78.CrossRefGoogle Scholar
  15. 15.
    Neil S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I. Nitric oxide evolution and perception. J Exp Bot. 2008;59:25–35.CrossRefGoogle Scholar
  16. 16.
    Floryszak-Wieczorek J, Milczarek G, Arasimowicz M, Ciszewski A. Do nitric oxide donors mimic endogenous NO-related response in plants? Planta. 2006;224:1363–72.CrossRefGoogle Scholar
  17. 17.
    Bethke PC, Badger MR, Jones RL. Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell. 2004;16:332–41.CrossRefGoogle Scholar
  18. 18.
    Minibayeva F, Gordon L, Alyabyev A, Rakhmatullina D, Loseva N. Heat production of root cells upon the dissipation of ion gradients on plasma membrane. Thermochim Acta. 1998;309:139–43.CrossRefGoogle Scholar
  19. 19.
    Gupta KJ, Stoimenova M, Kaiser WM. In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot. 2005;420:2601–9.CrossRefGoogle Scholar
  20. 20.
    Stöhr C, Ulrich WR. Generation and possible roles of NO in plant roots and their apoplastic space. J Exp Bot. 2002;53:2293–303.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Daniya Rakhmatullina
    • 1
  • Alexander Alyabyev
    • 1
  • Tatiana Ogorodnikova
    • 1
  • Anastasia Ponomareva
    • 1
  1. 1.Kazan Institute of Biochemistry and BiophysicsKazan Science Center of Russian Academy of SciencesKazanRussia

Personalised recommendations