Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 103, Issue 3, pp 1119–1124 | Cite as

Thermodynamic properties and molar heat capacity of Er2(Asp)2(Im)8(ClO4)6·10H2O

  • X.-C. Lv
  • Z.-C. Tan
  • X.-H. Gao
Article

Abstract

A complex of Erbium perchloric acid coordinated with l-aspartic acid and imidazole, Er2(Asp)2(Im)8(ClO4)6·10H2O was synthesized for the first time. It was characterized by IR and elements analysis. The heat capacity and thermodynamic properties of the complex were studied with an adiabatic calorimeter (AC) from 80 to 390 K and differential scanning calorimetry (DSC) from 100 to 300 K. Glass transition and phase transition were discovered at 220.45 and 246.15 K, respectively. The glass transition was interpreted as a freezing-in phenomenon of the reorientational motion of ClO4− ions and the phase transition was attributed to the orientational order/disorder process of ClO4− ions. The thermodynamic functions [H T  − H 298.15] and [S T  − S 298.15] were derived in the temperature range from 80 to 390 K with temperature interval of 5 K. Thermal decomposition behavior of the complex in nitrogen atmosphere was studied by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC).

Keywords

Er2(Asp)2(Im)8(ClO4)6·10H2Adiabatic calorimetry Low-temperature heat capacity Glass transition Phase transition Thermal analysis 

Notes

Acknowledgements

This study was financially supported by the National Nature Science Foundation of China under the NSFC Grant No. 21003069, 21073189.

References

  1. 1.
    Anghileri LJ. On the antitumor activity of gallium and lanthanides. Arzneim Forsch. 1975;25:793–5.Google Scholar
  2. 2.
    McCarthy GJ. Rare earths in modern science and technology, vol 2. New York: Plenum press; 1980; p. 25–105.Google Scholar
  3. 3.
    Sudhindra NM, Joshi GK, Bhutra MP. Syntheses and absorption spectral studies of Praseodymium (II) and Neodymium (II) complexes with amino acids. Indian J Chem. 1982;21A:275–8.Google Scholar
  4. 4.
    Xu H, Chen L. Study on the complex site of l-tyrosine with rare-earth element Eu3+. Spectrochim Acta A. 2003;59:657–62.CrossRefGoogle Scholar
  5. 5.
    Zhang H, Feng J, Zhu W-f. Rare-earth element distribution characteristics of biological chains in rare-earth element-high background regions and their implications. Biol Trace Elem Res. 2000;73:19–27.CrossRefGoogle Scholar
  6. 6.
    Glowiak T, Legendziewicz J, Huskowska E, Gawryszewska P. Ligand chirality effect on the structure and its spectroscopic consequences in [Ln2(Ala)4(H2O)8](ClO4)6. Polyhedron. 1996;15:2939–47.CrossRefGoogle Scholar
  7. 7.
    Liu B-P, Lv X-C, Tan Z-C, Zhang Z-H, Shi Q, Yang L-N, Xing J, Sun L-X, Zhang T. Molar heat capacity and thermodynamic properties of crystalline Ho(Asp)Cl2·6H2O. J Therm Anal Calorim. 2007;89:283–7.CrossRefGoogle Scholar
  8. 8.
    Liu B-P, Tan Z-C, Lu J-l, Lan X-Z, Sun L-X, Xu F, Yu P, Xing J. Low-temperature heat capacity and thermodynamic properties of crystalline [RE (Gly)3(H2O)2]Cl3·2H2O (RE = Pr, Nd, Gly = Glycine). Thermochim Acta. 2003;397:67–73.CrossRefGoogle Scholar
  9. 9.
    Qi Y-n, Zhang J, Qiu S-j, Sun L-x, Xu F, Zhu M, et al. Thermal stability, decomposition and glass transition behavior of PANI/NiO composites. J Therm Anal Calorim. 2009;98:533–7.CrossRefGoogle Scholar
  10. 10.
    Song L-F, Jiang C-H, Zhang J, Sun L-X, Xu F, et al. Heat capacities and thermodynamic properties of a novel mixed-ligands MOFs. J Therm Anal Calorim. 2010;100:679–84.CrossRefGoogle Scholar
  11. 11.
    Song L-F, Jiang C-H, Zhang J, Sun L-X, Xu F, et al. Heat capacities and thermodynamic properties of MgBTC. J Therm Anal Calorim. 2010;101:365–70.CrossRefGoogle Scholar
  12. 12.
    Nakamoto K. Infrared spectra of inorganic and coordination compounds. 4th ed. New York: Wiley; 1986. p. 258.Google Scholar
  13. 13.
    Wayda AL, Kaplan ML. Mixed ligand imidazole complexes of organolanthanides. Polyhedron. 1990;9:751–6.CrossRefGoogle Scholar
  14. 14.
    Tan Z-C, Liu B-P, Yan J-B, Sun L-X. A fully automated adiabatic calorimeter workable between 80 and 400 K. Comput Appl Chem. 2003;20:264–8. (in Chinese).Google Scholar
  15. 15.
    Nan Z-D, Tan Z-C. Low-temperature heat capacities and derived thermodynamic functions of cyclohexane. J Therm Anal Calorim. 2004;76:955–63.CrossRefGoogle Scholar
  16. 16.
    Tong B, Tan Z-C, Lv X-C, Sun L-X, Xu F, Shi Q, Li Y-S. Low-temperature heat capacities and thermodynamic properties of 2,2-dimethyl-1,3-propanediol. J Therm Anal Calorim. 2007;901:217–21.CrossRefGoogle Scholar
  17. 17.
    Lv X-C, Gao X-H, Tan Z-C. Molar heat capacity and thermodynamic properties of 1,2-cyclohexane dicarboxylic anhydride [C8H10O3]. J Therm Anal Calorim. 2008;92:523–7.CrossRefGoogle Scholar
  18. 18.
    Tan Z-C, Sun G-Y, Yin A-X, Wang W-B, Ye J-C, Zhou L-X. An adiabatic low-temperature calorimeter for heat capacity measurement of small samples. J Therm Anal. 1995;45:59–67.CrossRefGoogle Scholar
  19. 19.
    Donald GA. Thermodynamic properties of synthetic sapphire standard reference material 720 and the effect of temperature-scale difference on thermodynamic properties. J Phys Chem Ref Data. 1993;22:1441–52.CrossRefGoogle Scholar
  20. 20.
    Anna MM, Edward M, Hetmańczyk L, Natkaniec I, Ściesińska E, Ściesiński J, Wróbel S. Phase transition, molecular motions, structural changes and low-frequency vibrations in [Cu(NH3)5](ClO4)2. Chem Phys. 2005;317:188–97.CrossRefGoogle Scholar
  21. 21.
    Hangam SS, Westrumj ER. Heat capacities and thermodynamic properties of globular molecules. I. Adamantane and hexamethylenetetramine. Thermodyn Prop Globul Mol. 1960;64:1547–51.Google Scholar
  22. 22.
    Yukawa Y, Igarashi S, Masuda Y, Oguni M. Phase transition and glass transition concerning configurational order/disorder of ions in crystalline (TMA)2[Sr{Ni(pro)2}6](ClO4)4 and (TMA)[Sm{Ni(pro)2}6](ClO4)4. J Mol Struct. 2002;605:277–90.CrossRefGoogle Scholar
  23. 23.
    Udowenko AA, Laptash NM, Maslennikova IG. Orientation disorder in ammonium elpasolites: crystal structures of (NH4)3AlF6,(NH4)3TiOF5 and (NH4)3FeF6. J Fluor Chem. 2003;124:5–15.CrossRefGoogle Scholar
  24. 24.
    Meng J-X, Li J-H, Xie G-W, Huang W-G, Liang H-Z. Lanthanide ion luminescence probe: low temperature phase transition of EuS4N complex. Spectrosc Spectr Anal. 2002;22:562–5. (in Chinese).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.School of Chemistry and Material ScienceLiaoning Shihua UniversityFushunChina
  2. 2.Thermochemistry Laboratory, Dalian Institute of Chemical PhysicsChinese Academy of ScienceDalianChina
  3. 3.China Ionic Liquid Laboratory, Dalian Institute of Chemical PhysicsChinese Academy of ScienceDalianChina

Personalised recommendations