Journal of Thermal Analysis and Calorimetry

, Volume 105, Issue 3, pp 783–791 | Cite as

Ten years since Robert C. Mackenzie’s death. A tribute to the ICTA founder

  • Gianni Lombardi
  • Jaroslav Šesták


Dr. Robert Cameron Mackenzie was an eminent scientist who gave a major contribution to the progress of science in the fields of thermal analysis and clay minerals. He was a leading figure in the East–West cooperation at times when these relations were politically very difficult. The authors give an outline of his achievements and some personal recollections of his activity.


Thermal analysis Clay minerals ICTA DTA 



The authors thank Brian Currell, Georgy Liptay, Morag Mackenzie, Judit Simon and Shmuel Yariv for their collaboration in preparing this article. The grant support in the field of geopolymers No FR-TI 1/335 is appreciated.


  1. 1.
    Mackenzie RC. Highways and byways in thermal analysis. Analyst. 1974;99:900–12.CrossRefGoogle Scholar
  2. 2.
    Publications of RC. Mackenzie. Scientific papers and review articles. J Therm Anal. 1997;48:13–8.CrossRefGoogle Scholar
  3. 3.
    Smykatz-Kloss W. Meeting Robert C. Mackenzie: instead of a preface. J Therm Anal. 1997;48:3–6.CrossRefGoogle Scholar
  4. 4.
    Morgan D. Robert Mackenzie. J Therm Anal. 1997;48:7–9.CrossRefGoogle Scholar
  5. 5.
    Langier-Kuźniarowa A. Obituary–Robert Cameron Mackenzie. J Therm Anal. 2000;62:595–7.CrossRefGoogle Scholar
  6. 6.
    Wilson MJ. Obituary. Robert Cameron Mackenzie 1920–2000. Clay Miner. 2000;35:859–60.Google Scholar
  7. 7.
    Mackenzie RC. Investigations on soil clays at the Macaulay Institute for Soil Research. Clay Miner Bull. 1947;1:8–9.CrossRefGoogle Scholar
  8. 8.
    Mackenzie RC. DTA and its use in soil-clay mineralogy. Geol Fören Stockh. 1956;78:508–25.Google Scholar
  9. 9.
    Mackenzie RC, Milne AA. The effect of grinding on micas. Clay Miner Bull. 1953;2:57–62.CrossRefGoogle Scholar
  10. 10.
    Mackenzie RC. Free iron-oxide removal from soils. J Soil Sci. 1954;5:167–72.CrossRefGoogle Scholar
  11. 11.
    Mackenzie RC. The thermal investigation of soil clays. Agrochimica. 1956;1:1–22.Google Scholar
  12. 12.
    Mackenzie RC. Some unsolved problems in clay mineralogy. Geol Fören Stockh. 1956;78:558–60.Google Scholar
  13. 13.
    Mackenzie RC. Modern methods for studying clays. Agrochimica. 1957;1:305–7.Google Scholar
  14. 14.
    Mackenzie RC. Hydration and hydroxylation with special reference to montmorillonite. Geol Fören Stockh. 1957;79:58–60.Google Scholar
  15. 15.
    Mitchell BD, Mackenzie RC. An apparatus for differential thermal analysis under controlled atmosphere conditions. Clay Miner Bull. 1959;4:31–4.CrossRefGoogle Scholar
  16. 16.
    Šesták J, Burda E, Holba P, Bergstein A. Apparatus for DTA in controlled atmospheres. Chemické listy. 1969;63:785.Google Scholar
  17. 17.
    Brown A, Šesták J, Kronberg A. Vertical tungsten furnace for thermal studies up to 2700 °C. Czech J Phys. 1973;A23:612.Google Scholar
  18. 18.
    Mackenzie RC. An early Swiss commercial instrument. Thermochim Acta. 1985;85:251–4.CrossRefGoogle Scholar
  19. 19.
    Mackenzie RC, editor. The differential thermal investigation of clays. London: Mineral Society; 1957.Google Scholar
  20. 20.
    Kallauner O, Matějka J. Beitrag zu der rationellen analyse. Sprechsaal. 1914;47:423.Google Scholar
  21. 21.
    Matějka J. Chemical changes of kaolinite on firing. Chemické listy 1919;13:164–166 and 182–185.Google Scholar
  22. 22.
    Šesták J, Mackenzie RC. Rudolf Bàrta (1897–1985). J Therm Anal. 1986;31:3–4.CrossRefGoogle Scholar
  23. 23.
    Murphy CB. Thermal analysis progress. Anal Chem. 1958;30:867, 1960;32:168R, 1962;34:298R.Google Scholar
  24. 24.
    Berg LA. Introduction to thermography. Moscow: Nauka; 1964. (in Russian).Google Scholar
  25. 25.
    Berg LA. Introduction to thermal analysis. Moscow: Akad Nauk USSR; 1961. (in Russian).Google Scholar
  26. 26.
    Garn PD. Thermoanalytical methods of investigation. New York: Academic Press; 1962.Google Scholar
  27. 27.
    Wendlandt WW. Thermal methods of analysis. New York: Wiley; 1964.Google Scholar
  28. 28.
    Mackenzie RC. Origin and development of the international conference for thermal analysis (ICTA). J Therm Anal. 1993;40:5–28.CrossRefGoogle Scholar
  29. 29.
    Mackenzie RC, editor. Handbook of DTA. New York: Chemical Publishing; 1966.Google Scholar
  30. 30.
    Mackenzie RC, editor. Differential thermal analysis. London: Academic Press, 1970 vol. 1, 1972 vol. 2.Google Scholar
  31. 31.
    Mackenzie RC. Differential Thermoanalyse und ihre Anwendung auf technische Stäube. Tonindustr Ztg. 1951;75:334–40.Google Scholar
  32. 32.
    Mackenzie RC, Farmer VC. Some notes on Arens’ theory of differential thermal analysis. Clay Miner Bull. 1952;1:262–5.CrossRefGoogle Scholar
  33. 33.
    Šesták J. Thermophysical properties of solids: theoretical thermal analysis. Amsterdam: Elsevier; 1984.Google Scholar
  34. 34.
    Šesták J. Těoretičeskij těrmičeskij analyz. Moscow: Mir; 1988. (in Russian).Google Scholar
  35. 35.
    Mackenzie RC. Nomenclature in thermal analysis. In: Kolthoff IM, Elving PJ, Murphy CB, editors. Treatise on analytical chemistry. 2nd ed. New York: Wiley 1983. Part I, vol. 12. p. 1–16.Google Scholar
  36. 36.
    Mackenzie RC, Keattch CJ, Hodgson AA, Redfern JE. Abbreviations in thermal analysis. Chem Ind. 1970;272–275.Google Scholar
  37. 37.
    Mackenzie RC. Recommendations for nomenclature in thermal analysis. In: Schwenker RE, Garn ED, editors. Thermal analysis. New York: Academic Press; 1969. p. 685–91.Google Scholar
  38. 38.
    Mackenzie RC. Nomenclature in thermal analysis. Talanta. 1969;16:1227–30.CrossRefGoogle Scholar
  39. 39.
    Mackenzie RC. How is an acceptable nomenclature system achieved? J Thermal Anal. 1972;4:215–21.CrossRefGoogle Scholar
  40. 40.
    Mackenzie RC. Nomenclature in thermal analysis. Part IV. Thermochim Acta. 1979;28:1–6.CrossRefGoogle Scholar
  41. 41.
    Mackenzie RC, et al. Nomenclature in thermal analysis. Part V. Symbols. Thermochim Acta. 1981;46:333–5.CrossRefGoogle Scholar
  42. 42.
    Šesták J, Holba P, Fajnor V. Proposal of the Czech-Slovak nomenclature in thermal analysis. Chemické listy. 1983;77:1292–308. (published under the supervision of RC Mackenzie).Google Scholar
  43. 43.
    Šesták J, Holba P, Fajnor V, Kuzniarová A, Logviněnko VA, Metlin JuG, Pelovský Y, Živkovič Z., Mackenzie RC. Proposition for English based thermoanalytical terminology in Bulgarian, Czech, Polish, Russian, Serbian and Slovak languages. ICTA report completed under the Slavic international cooperation.Google Scholar
  44. 44.
    Mackenzie RC. The story of the platimun-wounded electric resistance furnace. Platinum Met Rev. 1982;26:175–83.Google Scholar
  45. 45.
    Mackenzie RC. De Calore: prelude to thermal analysis. Thermochim Acta. 1984;73:251–306.CrossRefGoogle Scholar
  46. 46.
    Mackenzie RC. Origin and development of thermal analysis. Thermochim Acta. 1984;73:307–67.CrossRefGoogle Scholar
  47. 47.
    Mackenzie RC, Proks I. Comenius and Black: progenitors of thermal analysis. Thermochim Acta. 1985;92:3–14.CrossRefGoogle Scholar
  48. 48.
    Mackenzie RC. George Martine, M.D., F.R.S. (1700–1741): an early thermal analyst? J Thermal Anal. 1989;95:1823–36.CrossRefGoogle Scholar
  49. 49.
    Mackenzie RC. Early thermometry and differential thermometry. Thermochim Acta. 1989;148:57–62.CrossRefGoogle Scholar
  50. 50.
    Mackenzie RC. The first quarter century. J Thermal Anal. 1994;42:295–9.CrossRefGoogle Scholar
  51. 51.
    Šesták J. Some historical aspects of thermal analysis: origins of Termanal, CalCon and ICTA. In: Klein E, Smrčková E, Šimon P, editors. Proceedings of the International Conference on Thermal Analysis “Termanal”. Bratislava: Publishing House of the Slovak Technical University; 2005. p. 3–11.Google Scholar
  52. 52.
    Proks I. Evaluation of the knowledge of phase equilibria. In: Chvoj Z, Šesták J, Tříska A, editors. Kinetic phase diagrams. Amsterdam: Elsevier; 1991. p. 1–53.Google Scholar
  53. 53.
    Proks I. Celok je jednodušší než jeho části. (Whole is simpler than its parts). Bratislava: Publishing House of Slovak Academy of Sciences; 2010 (in Slovak).Google Scholar
  54. 54.
    Šesták J, Proks I, Šatava V, Habersberger K, Brandštetr J, Koráb O, Pekárek V, Rosický J, Vaniš M, Velíšek J. The history of thermoanalytical and related methods in the territory of present-day Czechoslovakia. Thermochim Acta. 1986;100:255–70.CrossRefGoogle Scholar
  55. 55.
    Šesták J, Hubík P, Mareš JJ. Historical roots and development of thermal analysis and calorimetry. In: Šesták J, Mareš JJ, Hubík P, editors. Glassy, amorphous and nano-crystalline materials. Berlin: Springer; 2011. p. 347–70.Google Scholar
  56. 56.
    Šesták J, Mackenzie RC. The heat/fire concept and its journey from prehistoric time into the third millennium. J Therm Anal Calorim. 2001;64:129–47.CrossRefGoogle Scholar
  57. 57.
    Liptay G, editor. Atlas of thermoanalytical curves: (TG, DTG, DTA curves measured simultaneously). London, New York: Heyden and Son; 1971.Google Scholar
  58. 58.
    Wendlandt WW. How Thermochmica Acta began: some recollections. Thermochim Acta. 1981;50:1–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Former Sapienza Università di RomaRomeItaly
  2. 2.New Technology—Research Centre in the West Bohemian RegionWest Bohemian UniversityPilsenCzech Republic
  3. 3.Institute of PhysicsPrahaCzech Republic

Personalised recommendations