Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 105, Issue 2, pp 509–516 | Cite as

Chemistry and thermal decomposition of trinitropyrazoles

  • Igor Dalinger
  • Svyatoslav Shevelev
  • Vyacheslav Korolev
  • Dmitriy Khakimov
  • Tatyana Pivina
  • Alla Pivkina
  • Olga Ordzhonikidze
  • Yuriy Frolov
Article

Abstract

New energetic compounds-3,4,5-1H-trinitropyrazole (TNP), 1-methyl-3,4,5-1H-trinitropyrazole (MTNP) and ammonium 3,4,5-1H-TNP have been synthesized and characterized by thermal analysis. These new compounds can be considered as promising since the high heat of formation for them. To estimate the process of their thermal decomposition, the original technique for computer simulation was used. We generated the models for the mechanisms of thermal decay of synthesized compounds which allowed obtaining comprehensive spectrum of transformations of intermediates on the way to the final products of thermolysis. The preferred pathways were determined based on the results of activation energy (E a) calculations (DFT 6-311++G** method) of thermal decay reactions for each generated pathways. The thermal decomposition has been studied also experimentally by thermogravimetry (TG) and differential scanning calorimetry. Kinetic parameters of thermolysis were evaluated by model-free and -fitting methods using TG data. Model-free method has given not reliable data for TNP and MTNP compounds, whereas model-fitting yields kinetic equations with the good correlation with experimental TG data.

Keywords

Trinitropyrazoles Thermolysis Kinetics Quantum chemical calculations 

Notes

Acknowledgements

We thank Professor Boris Korsunskii (Semenov Institute of Chemical Physics, Russian Academy of Science) for the helpful discussions of this work.

References

  1. 1.
    Dalinger IL, Popova GP, Vatsadze IA, Shkineva TK, Shevelev SA. Synthesis of 3, 4, 5-trinitropyrazole. Russ Chem Bull Int Ed. 2009;58:2185.CrossRefGoogle Scholar
  2. 2.
    Dalinger IL, Vatsadze IA, Popova GP, Shkineva TK, Shevelev SA. The specific reactivity of 3,4,5-trinitro-1H-pyrazole. Mendeleev Commun. 2010;20:253–4.CrossRefGoogle Scholar
  3. 3.
    Herve G, Roussel C, Graindorge H. Selective preparation of 3,4,5-trinitro-1H-pyrazole: a stable all-carbone-nitrated arene. Angewandte Chem. 2010;49:3177–81.CrossRefGoogle Scholar
  4. 4.
    Korolev V, Pivina T, Porollo A, Petukhova T, Sheremetev A, Ivshin V. Differentiation of the molecular structures of nitro compounds as the basis for simulation of their thermal destruction processes. Russian Chem Rev. 2009;78(10):945–69.CrossRefGoogle Scholar
  5. 5.
    Koch W, Holthausen MC. A chemist’s guide to density functional theory. Weinheim: Wiley-VCH; 2001. 300 pp.CrossRefGoogle Scholar
  6. 6.
    Clark T. A handbook of computational chemistry. New York: Wiley; 1985. 383 pp.Google Scholar
  7. 7.
    Frish MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Jr., Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komazomi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, and Pople JA, GAUSSIAN 98. Revision A.9, Gaussian Inc., Pittsburgh, 1998.Google Scholar
  8. 8.
    Emanuel NM, Knorre DG. Course of chemical kinetics (in Russian). Moscow: Vysshaya Shkola; 1984. 463 pp.Google Scholar
  9. 9.
    Manelis GB, Nazin GM, YuI Rubtsov, Strunin VA. Termicheskoe razlozhenie i gorenie vzryvchatykh veshchestv i porokhov (in Russian). Moscow: Nauka; 1996. 223 pp.Google Scholar
  10. 10.
    Khrapkovskii GM, Marchenko GN, Shamov AG. Influence of structure of molecules on kinetic parameters of monomolecular decay of C- and N-nitro compounds (in Russian). Kazan: FEN; 1997. 139 pp.Google Scholar
  11. 11.
    Korolev VL, Petukhova TV, Pivina TS, Porollo AA, Sheremetev AB, Suponitsky KY, Ivshin VP. Thermal decomposition mechanisms of nitro-1,2,4-triazols: a theoretical study. Russian Chem Bull. 2006;55(8):1338–410.CrossRefGoogle Scholar
  12. 12.
    Jank H-W, Meister A. Zerlegung von Spektren in ihre Komponenten. I. Mathematische Probleme. Kulturpflanze. 1982;30:125−40.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Igor Dalinger
    • 1
  • Svyatoslav Shevelev
    • 1
  • Vyacheslav Korolev
    • 1
  • Dmitriy Khakimov
    • 1
  • Tatyana Pivina
    • 1
  • Alla Pivkina
    • 2
  • Olga Ordzhonikidze
    • 2
  • Yuriy Frolov
    • 2
  1. 1.Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of ScienceMoscowRussia

Personalised recommendations