Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 105, Issue 2, pp 467–471 | Cite as

Study of the thermal behavior of the transition phase of Co(II)–diclofenac compound by non-isothermal method

  • Marcelo Kobelnik
  • Clóvis A. Ribeiro
  • Diógenes dos Santos Dias
  • Sonia de Almeida
  • Marisa Spirandeli Crespi
  • Jorge M. V. Capela
Article

Abstract

The Co(II)–diclofenac complex was evaluated by simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC). The DTA curve profile shows one exothermic peak because of the transition phase of the compound between 170 and 180 °C, which was confirmed by X-ray powder diffractometry. The transition phase behavior was studied by DSC curves at several heating rates of a sample mass between 1 and 10 mg in nitrogen atmosphere and in a crucible with and without a lid. Thus, the kinetic parameters were evaluated using an isoconversional non-linear fitting proposed by Capela and Ribeiro. The results show that the activation energy and pre-exponential factor for the transition phase is dependant on the different experimental conditions. Nevertheless, these results indicate that the kinetic compensation effect shows a relationship between them.

Keywords

Co(II)–diclofenac DSC Transition phase Non-isothermal kinetic 

Notes

Acknowledgements

The authors thank Brazilian agencies CAPES and CNPq for financial support.

References

  1. 1.
    Demertzi DK, Theodorou A, Demertezi MA, Raptopoulou CP, Terzis A. Synthesis and characterization of Tetrakis-tx-2-[(2,6dichlorophenyl) amino] benzeneacetodiaquodicopper(II) dihydrate and Tetrakis-2-[(2,6dichlorophenyl) amino]benzeneaceto dimethylformamidodicopper(II). J Inorg Biochem. 1997;65:151–7.CrossRefGoogle Scholar
  2. 2.
    Demertzi DK, Hadjikakou SK, Demertzi MA, Deligiannakis Y. Metal ion ± drug interactions. Preparation and properties of manganese (II), cobalt (II) and nickel (II) complexes of diclofenac with potentially interesting anti-inflammatory activity: behavior in the oxidation of 3,5-di-tert-butyl-o-catechol. J Inorg Biochem. 1998;69:223–9.CrossRefGoogle Scholar
  3. 3.
    Kenawi IM. Density functional theory assessment of the thermal degradation of diclofenac and its calcium and iron complexes. J Mol Struct. 2005;754:61–70.CrossRefGoogle Scholar
  4. 4.
    Bucci R, Magri AD, Magri AL, Napoli A. Spectroscopic characteristics and thermal properties of divalent metal complexes of diclofenac. Polyhedron. 2000;19:2515–20.CrossRefGoogle Scholar
  5. 5.
    Kobelnik M, Bernabé GA, Ribeiro CA, Capela JMV, Fertonani FL. Kinetic of decomposition of iron (III)–diclofenac compound. J Therm Anal Calorim. 2009;97:493–6.CrossRefGoogle Scholar
  6. 6.
    Kobelnik M, Cassimiro DL, Ribeiro CA, Dias DS, Crespi MS. Preparation of the Ca–diclofenac complex in solid state: study of the thermal behavior of the dehydration, transition phase and decomposition. J Therm Anal Calorim. doi:  10.1007/s10973-010-0787-8.
  7. 7.
    Kobelnik M, Quarcioni VA, Ribeiro CA, Capela JMV, Dias DS, Crespi MS. Thermal study in solid state of Zn(II)–diclofenac complex: behavior kinetic of the dehydration, transition phase and thermal decomposition. J Chin Chem Soc. 2010;57:384–90.Google Scholar
  8. 8.
    Malek J, Smreka V. The kinetic analysis of the crystallization processes in glasses. Thermochim Acta. 1991;186:153–69.CrossRefGoogle Scholar
  9. 9.
    Koga N, Sestak J. Kinetic modeling of advanced inorganic glass-ceramics formation by crystal growth from pre-existing nuclei. J Therm Anal Calorim. 2000;60:667–74.CrossRefGoogle Scholar
  10. 10.
    Malek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.CrossRefGoogle Scholar
  11. 11.
    Capela JMV, Capela MV, Ribeiro CA. Rational approximations of the Arrhenius integral using Jacobi fractions and gaussian quadrature. J Math Chem. 2009;45:769–75.CrossRefGoogle Scholar
  12. 12.
    Souza JL, Kobelnik M, Ribeiro CA, Capela JMV. Kinetics study of crystallization of PHB in presence of hydrociacids. J Therm Anal Calorim. 2009;97:525–8.CrossRefGoogle Scholar
  13. 13.
    Koga N, Sesták J. Further aspects of the kinetic compensation effect. J Therm Anal Calorim. 1991;37:1103–8.CrossRefGoogle Scholar
  14. 14.
    Koga N, Tanaka H. A kinetic compensation effect established for the thermal decomposition of a solid. J Therm Anal Calorim. 1991;37:347.CrossRefGoogle Scholar
  15. 15.
    Zsakó J. Compensation effect in heterogeneous non-isothermal kinetics. J Therm Anal Calorim. 1996;47:1679.CrossRefGoogle Scholar
  16. 16.
    Crespi MS, Hikosada MY, Amaral GCA, Ribeiro CA. Non-isothermal kinetic applied to thermal decomposition of commercial alkyd varnish. J Therm Anal Calorim. 2007;88:669.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Marcelo Kobelnik
    • 1
  • Clóvis A. Ribeiro
    • 2
  • Diógenes dos Santos Dias
    • 2
  • Sonia de Almeida
    • 2
  • Marisa Spirandeli Crespi
    • 2
  • Jorge M. V. Capela
    • 2
  1. 1.Centro Universitário do Norte Paulista—UNORPSão José do Rio PretoBrazil
  2. 2.Instituto de Química de AraraquaraUnesp—Universidade Estadual PaulistaAraraquaraBrazil

Personalised recommendations