Journal of Thermal Analysis and Calorimetry

, Volume 105, Issue 2, pp 467–471 | Cite as

Study of the thermal behavior of the transition phase of Co(II)–diclofenac compound by non-isothermal method

  • Marcelo Kobelnik
  • Clóvis A. Ribeiro
  • Diógenes dos Santos Dias
  • Sonia de Almeida
  • Marisa Spirandeli Crespi
  • Jorge M. V. Capela


The Co(II)–diclofenac complex was evaluated by simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC). The DTA curve profile shows one exothermic peak because of the transition phase of the compound between 170 and 180 °C, which was confirmed by X-ray powder diffractometry. The transition phase behavior was studied by DSC curves at several heating rates of a sample mass between 1 and 10 mg in nitrogen atmosphere and in a crucible with and without a lid. Thus, the kinetic parameters were evaluated using an isoconversional non-linear fitting proposed by Capela and Ribeiro. The results show that the activation energy and pre-exponential factor for the transition phase is dependant on the different experimental conditions. Nevertheless, these results indicate that the kinetic compensation effect shows a relationship between them.


Co(II)–diclofenac DSC Transition phase Non-isothermal kinetic 



The authors thank Brazilian agencies CAPES and CNPq for financial support.


  1. 1.
    Demertzi DK, Theodorou A, Demertezi MA, Raptopoulou CP, Terzis A. Synthesis and characterization of Tetrakis-tx-2-[(2,6dichlorophenyl) amino] benzeneacetodiaquodicopper(II) dihydrate and Tetrakis-2-[(2,6dichlorophenyl) amino]benzeneaceto dimethylformamidodicopper(II). J Inorg Biochem. 1997;65:151–7.CrossRefGoogle Scholar
  2. 2.
    Demertzi DK, Hadjikakou SK, Demertzi MA, Deligiannakis Y. Metal ion ± drug interactions. Preparation and properties of manganese (II), cobalt (II) and nickel (II) complexes of diclofenac with potentially interesting anti-inflammatory activity: behavior in the oxidation of 3,5-di-tert-butyl-o-catechol. J Inorg Biochem. 1998;69:223–9.CrossRefGoogle Scholar
  3. 3.
    Kenawi IM. Density functional theory assessment of the thermal degradation of diclofenac and its calcium and iron complexes. J Mol Struct. 2005;754:61–70.CrossRefGoogle Scholar
  4. 4.
    Bucci R, Magri AD, Magri AL, Napoli A. Spectroscopic characteristics and thermal properties of divalent metal complexes of diclofenac. Polyhedron. 2000;19:2515–20.CrossRefGoogle Scholar
  5. 5.
    Kobelnik M, Bernabé GA, Ribeiro CA, Capela JMV, Fertonani FL. Kinetic of decomposition of iron (III)–diclofenac compound. J Therm Anal Calorim. 2009;97:493–6.CrossRefGoogle Scholar
  6. 6.
    Kobelnik M, Cassimiro DL, Ribeiro CA, Dias DS, Crespi MS. Preparation of the Ca–diclofenac complex in solid state: study of the thermal behavior of the dehydration, transition phase and decomposition. J Therm Anal Calorim. doi:  10.1007/s10973-010-0787-8.
  7. 7.
    Kobelnik M, Quarcioni VA, Ribeiro CA, Capela JMV, Dias DS, Crespi MS. Thermal study in solid state of Zn(II)–diclofenac complex: behavior kinetic of the dehydration, transition phase and thermal decomposition. J Chin Chem Soc. 2010;57:384–90.Google Scholar
  8. 8.
    Malek J, Smreka V. The kinetic analysis of the crystallization processes in glasses. Thermochim Acta. 1991;186:153–69.CrossRefGoogle Scholar
  9. 9.
    Koga N, Sestak J. Kinetic modeling of advanced inorganic glass-ceramics formation by crystal growth from pre-existing nuclei. J Therm Anal Calorim. 2000;60:667–74.CrossRefGoogle Scholar
  10. 10.
    Malek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.CrossRefGoogle Scholar
  11. 11.
    Capela JMV, Capela MV, Ribeiro CA. Rational approximations of the Arrhenius integral using Jacobi fractions and gaussian quadrature. J Math Chem. 2009;45:769–75.CrossRefGoogle Scholar
  12. 12.
    Souza JL, Kobelnik M, Ribeiro CA, Capela JMV. Kinetics study of crystallization of PHB in presence of hydrociacids. J Therm Anal Calorim. 2009;97:525–8.CrossRefGoogle Scholar
  13. 13.
    Koga N, Sesták J. Further aspects of the kinetic compensation effect. J Therm Anal Calorim. 1991;37:1103–8.CrossRefGoogle Scholar
  14. 14.
    Koga N, Tanaka H. A kinetic compensation effect established for the thermal decomposition of a solid. J Therm Anal Calorim. 1991;37:347.CrossRefGoogle Scholar
  15. 15.
    Zsakó J. Compensation effect in heterogeneous non-isothermal kinetics. J Therm Anal Calorim. 1996;47:1679.CrossRefGoogle Scholar
  16. 16.
    Crespi MS, Hikosada MY, Amaral GCA, Ribeiro CA. Non-isothermal kinetic applied to thermal decomposition of commercial alkyd varnish. J Therm Anal Calorim. 2007;88:669.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Marcelo Kobelnik
    • 1
  • Clóvis A. Ribeiro
    • 2
  • Diógenes dos Santos Dias
    • 2
  • Sonia de Almeida
    • 2
  • Marisa Spirandeli Crespi
    • 2
  • Jorge M. V. Capela
    • 2
  1. 1.Centro Universitário do Norte Paulista—UNORPSão José do Rio PretoBrazil
  2. 2.Instituto de Química de AraraquaraUnesp—Universidade Estadual PaulistaAraraquaraBrazil

Personalised recommendations