Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 105, Issue 2, pp 421–426 | Cite as

Kinetic parameters for thermal decomposition of microcrystalline, vegetal, and bacterial cellulose

  • Hernani S. Barud
  • Clóvis A. Ribeiro
  • Jorge M. V. Capela
  • Marisa S. Crespi
  • Sidney. J. L. Ribeiro
  • Younes Messadeq
Article

Abstract

Cellulose can be obtained from innumerable sources such as cotton, trees, sugar cane bagasse, wood, bacteria, and others. The bacterial cellulose (BC) produced by the Gram-negative acetic-acid bacterium Acetobacter xylinum has several unique properties. This BC is produced as highly hydrated membranes free of lignin and hemicelluloses and has a higher molecular weight and higher crystallinity. Here, the thermal behavior of BC, was compared with those of microcrystalline (MMC) and vegetal cellulose (VC). The kinetic parameters for the thermal decomposition step of the celluloses were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and at heating rates of 5, 10, and 20 °C/min, the E α and B α terms could be determined and consequently the pre-exponential factor A α as well as the kinetic model g(α). The pyrolysis of celluloses followed kinetic model \( g(\alpha ) = [ - \ln (1 - \alpha )]^{{{1 \mathord{\left/ {\vphantom {1 {1.63}}} \right. \kern-\nulldelimiterspace} {1.63}}}} \) on average, characteristic for Avrami–Erofeev with only small differences in activation energy. The fractional value of n may be related to diffusion-controlled growth, or may arise from the distributions of sizes or shapes of the reactant particles.

Keywords

Bacterial cellulose Non-isothermal kinetic Thermal decomposition 

Notes

Acknowledgements

The authors acknowledge the FACTE—Fundação de Apoio à Ciência Tecnologia e Educação for financial support.

References

  1. 1.
    Gardner DJ, Oporto GS, Mills R, Samir MASA. Adhesion and surface issues in cellulose and nanocellulose. J Adhesion Sci Technol. 2008;22:545–67.CrossRefGoogle Scholar
  2. 2.
    Barud HS, Ribeiro CA, Crespi MS, Martines MA, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJ L. Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim. 2007;87:815–8.CrossRefGoogle Scholar
  3. 3.
    Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S. Nanocelluloses as innovative polymers in research and application. Adv Polym Sci. 2006;205:49–96.CrossRefGoogle Scholar
  4. 4.
    Kennedy JF, Phillips GO, Wedlock DJ, Williams PA. Cellulose and its derivatives. Chemistry, biochemistry and applications. UK: Ellis Horwood; 1985.Google Scholar
  5. 5.
    Sjostroom E. Wood chemistry: fundamentals and applications. New York: Academic Press; 1981.Google Scholar
  6. 6.
    Iguchi M, Yamanaka S, Budhiono A. Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci. 2000;35:261–70.CrossRefGoogle Scholar
  7. 7.
    Moon RJ. Nanomaterials in the forest products industry. Mcgraw-Hill Yearbook of Science & Technology. New York: McGraw-Hill; 2008.Google Scholar
  8. 8.
    Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44:3358–93.CrossRefGoogle Scholar
  9. 9.
    Klemm D, Schumann D, Udhardt U, Marsch S. Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polymer Sci. 2001;26:1561–603.CrossRefGoogle Scholar
  10. 10.
    Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Ghys JD, Messaddeq Y, Ribeiro SJL. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mat Sci Eng. 2008;C28:515–8.Google Scholar
  11. 11.
    Barud HS, Assunção RMN, Martines MAU, Ghys JD, Marques RFC, Messaddeq Ribeiro Y, Ribeiro SJL. Bacterial cellulose–silica organic–inorganic hybrids. J Sol Gel Sci Technol. 2008;46:363–7.CrossRefGoogle Scholar
  12. 12.
    Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martínez-Pastor J. Development of self-assembled bacterial cellulose–starch nanocomposites. Mat Sci Eng C. 2009;29:1098–104.CrossRefGoogle Scholar
  13. 13.
    Wang J, Gao C, Zhang Y, Wan Y. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C. 2010;30:214–8.CrossRefGoogle Scholar
  14. 14.
    Kramer F, Klemm D, Schumann D, Hessler N, Wesarg F, Fried W, Stadermann D. Nanocellulose polymer composites as innovative pool for (Bio) material development. Macromol Symp. 2006;244:136–48.Google Scholar
  15. 15.
    Hirata T. Changes in degree of polymerization and weight of cellulose untreated with inorganic salts during pyrolysis. For For Prod Res Inst Bull. 1979;304:77–124.Google Scholar
  16. 16.
    YuI Rubtsov, Kazakov AI. Kinetics of heat release during decomposition of cellulose. Combust Explos Shock Waves. 1993;29:710–3.CrossRefGoogle Scholar
  17. 17.
    Varhegyi G, Antal MJ Jr. Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugar cane bagasse. Energy Fuels. 1989;3:329–35.CrossRefGoogle Scholar
  18. 18.
    Vovelle C, Mellottée H, Delbourgo R. Kinetics of the thermal degradation of cellulose and wood in inert and oxidative atmospheres. Symposium (International) on Combustion. 1982;19:797–805.Google Scholar
  19. 19.
    Akira K. A study on the carbonization process of wood. For For Prod Res Inst Bull. 1979;304:7–76.Google Scholar
  20. 20.
    Bigger SW, Scheirs J, Camino G. An investigation of the kinetics of cellulose degradation under non-isothermal conditions. Polym Degrad Stab. 1998;62:33–40.CrossRefGoogle Scholar
  21. 21.
    Emsley AM, Heywood RJ, Ali M, Eley CM. On the kinetics of degradation of cellulose. Cellulose. 1997;4:1–5.CrossRefGoogle Scholar
  22. 22.
    Fairbridge C, Ross RA, Sood SP. A kinetic and surface study of the thermal decomposition of cellulose powder in inert and oxidizing atmospheres. J Appl Polym Sci. 1997;22:497–510.CrossRefGoogle Scholar
  23. 23.
    Dahiya JB, Kumar K, Muller-Hagedorn M, Bockhorn H. Kinetics of isothermal and non-isothermal degradation of cellulose: model-based and model-free methods. Polym Int. 2008;57:722–9.CrossRefGoogle Scholar
  24. 24.
    Capela JMV, Capela MV, Ribeiro CA. Rational approximations of the Arrhenius integral using Jacobi fractions and gaussian quadrature. J Math Chem. 2009;45:769–75.CrossRefGoogle Scholar
  25. 25.
    ABNT—Associação Brasileira de Normas Técnicas—NBR 7730.Google Scholar
  26. 26.
    Oliveira RL, Oliveira GC, Meireles CS, de Assunção RMN, Barud HS, Rodrigues Filho G, Messaddeq Y, Ribeiro SJL. Synthesis and characterization of microcrystalline cellulose produced from bacterial cellulose. J Therm Anal Calorim. 2010; submitted.Google Scholar
  27. 27.
    Bolhuis GH, Chawhan ZT. Materials for direct compaction. In: Nyström C, Alderbon G, editors. Pharmaceutical powder compaction technology. New York: Marcel Dekker; 1996.Google Scholar
  28. 28.
    Gawey AK, Brown ME. Thermal decomposition of ionic solids. Amsterdam: Elsevier; 1999.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Hernani S. Barud
    • 1
  • Clóvis A. Ribeiro
    • 1
  • Jorge M. V. Capela
    • 1
  • Marisa S. Crespi
    • 1
  • Sidney. J. L. Ribeiro
    • 1
  • Younes Messadeq
    • 1
  1. 1.Institute of ChemistryAraraquara-Paulista State UniversityAraraquaraBrazil

Personalised recommendations