Journal of Thermal Analysis and Calorimetry

, Volume 103, Issue 3, pp 1055–1061 | Cite as

Calorimetric investigations and thermodynamic calculation of Zn–Al–Ga system

  • Ljubiša Balanović
  • Dragana Živković
  • Aleksandra Mitovski
  • Dragan Manasijević
  • Živan Živković


The results of calorimetric investigations and thermodynamic calculation of Zn–Al–Ga system are presented in this article. The research was carried out experimentally, using Oelsen calorimetry in temperature interval 800–1,000 K, and by thermodynamic calculation, applying general solution model in temperature interval 800–1,600 K. The enthalpy space diagram, the enthalpy isotherm diagram, as well as the values for zinc activities, partial and integral molar Gibbs excess energies have been determined. Comparison of experimentally obtained results and the results calculated by general solution model was done at the temperatures 800, 900, and 1000 K, which indicated a good mutual agreement.


Alloy thermodynamics Calorimetry Thermodynamic predicting methods Ternary system Zn–Al–Ga 



This work was done in the frame of Project No. 142043 financed by the Ministry of Science and Environmental Protection of the Republic of Serbia and in the frame of COST Action MP0602.


  1. 1.
    Lynch RF. Zinc: alloying, thermomechanical processing, properties, and applications. In: Buschow KHJ, Cahn R, Flemings M, Ilschner B, Kramer E, Mahajan S, Veyssiere P, editors. Encyclopedia of materials: science, technology. Oxford: Pergamon Press; 2001. p. 9869.Google Scholar
  2. 2., p. 12. Accessed 15 June 2010.
  3. 3.
    Straumal B, Valiev R, Kogtenkova O, Zieba P, Czeppe T, Bielanska E, Faryna M. Thermal evolution and grain boundary phase transformations in severely deformed nanograined Al–Zn alloys. Acta Mater. 2008;56:6123–31.CrossRefGoogle Scholar
  4. 4.
    Hsuan TC, Lin KL. Microstructural evolution of ε-AgZn3 and ε-Zn phases in Sn–8.5Zn–0.5Ag–0.01Al–0.1Ga solder during aging treatment. J Alloys Compd. 2009;469:350–6.CrossRefGoogle Scholar
  5. 5.
    Zhou XZ, Su YC. A novel Cu–Ni–Zn–Al alloy with high strength through precipitation hardening. Mat Sci Eng A Struct. 2010;527:5153–6.CrossRefGoogle Scholar
  6. 6.
    Ansara I, Petzow G, Effenberg G. Ternary Alloys. 1991;5:552–3.Google Scholar
  7. 7.
    Aragon E, Jardet K, Satre P, Sebaoun A. The Al–Zn–Ga phase diagram part I. J Therm Anal. 1998;53:769–84.CrossRefGoogle Scholar
  8. 8.
    Aragon E, Jardet K, Satre P, Sebaoun A. The Al–Zn–Ga phase diagram part I I. J Therm Anal. 1998;53:785–95.CrossRefGoogle Scholar
  9. 9.
    Aragon E, Jardet K, Satre P, Sebaoun A. Al–Ga–Zn phase diagram. Calorimetric study of the isobaric invariants. J Therm Anal Calorim. 2000;62:211–25.CrossRefGoogle Scholar
  10. 10.
    Mathon M, Jardet K, Aragon E, Satre P, Sebaoun A. Al–Ga–Zn system: reassessments of the three binary systems and discussion on possible estimations and on optimisation of the ternary system. Calphad. 2000;24:253–84.CrossRefGoogle Scholar
  11. 11.
    Jardet K, Muller Ch, Bellissent R, Satre P, Sebaoun A. Temperature dependent X-ray and neutron diffraction study of the liquid–solid and solid–solid equilibria in the Al29.2Ga27Zn43.8 ternary alloy. J Alloys Compd. 2001;316:179–88.CrossRefGoogle Scholar
  12. 12.
    Jardet K, Favotto C, Bellissent R, Satre P. Local order in liquid phases of Al–Ga–Zn alloys. Thermochim Acta. 2003;402:135–43.Google Scholar
  13. 13.
    Bourkba A, Thesis, University Agadir, Morocco, 29 Oct. 1996.Google Scholar
  14. 14.
    Oelsen W, Tebbe W, Oelsen O. Zur thermodynamischen Analyse VII–Das Trockneis-Kalorimeter. Arch Eisenhuttenwess. 1956;27:689–94.Google Scholar
  15. 15.
    Oelsen W, Schurmann E, Weigt HJ, Oelsen O. Zur thermodynamischen Analyse IV–Vermischungsentropie und Bildungsaffinitat der Blei-Kadmium-Schmelzen aus kalorimetrischen Messungen. Arch Eisenhuttenwess. 1956;27:487–511.Google Scholar
  16. 16.
    Oelsen W, Bieret F, Schwabe G. Zur thermodynamischen Analyse VI–Kalorimetrie und Thermodynamic der Wismut-Kadmium-Legierungen. Arch Eisenhuttenwess. 1956;27:607–20.Google Scholar
  17. 17.
    Gomidželović L, Živković D. Thermodynamic analysis of Au–In–Sb system using Oelsen calorimetry and predicting methods. J Therm Anal Calorim. 2009;98:743–8.CrossRefGoogle Scholar
  18. 18.
    Živković D, Katayama I, Gomidželović L, Manasijević D, Novaković R. Comparative thermodynamic study and phase equilibria of the Bi–Ga–Sn ternary system. Int J Mater Res. 2007;98:1025–30.Google Scholar
  19. 19.
    Chou KC. A general solution model for predicting ternary thermodynamic properties. Calphad. 1995;19:315–25.CrossRefGoogle Scholar
  20. 20.
    Chou KC, Li WC, Li F, He M. Formalism of new ternary model expressed in terms of binary regular-solution type parameters. Calphad. 1996;20:395–406.CrossRefGoogle Scholar
  21. 21.
    Redlich O, Kister AT. Activity coefficient model. Ind Eng Chem. 1948;24:345–52.Google Scholar
  22. 22.
    Singh RN. Short-range order and concentration fluctuations in binary molten alloys. Can J Phys. 1987;65:309–25.Google Scholar
  23. 23.
    an Mey S. Reevaluation of the Al–Zn system. Z. Metallknde. 1993;84:451–5.Google Scholar
  24. 24.
    Watson A. Re-assessment of phase diagram and thermodynamic properties of the Al–Ga system. Calphad. 1992;16:207–17.CrossRefGoogle Scholar
  25. 25.
    Dutkiewicz J, Moser Z, Zabdyr L, Gohil DD, Chart TG, Ansara I, Girard C. The Ga–Zn (Gallium-Zinc) system. Bull Alloy Phase Diagr. 1990;11:77–82.CrossRefGoogle Scholar
  26. 26.
    Živković D, Manasijević D, Živković Ž. Thermodynamic study of Ga–Sn and Ga–Zn systems using quantitative differential thermal analysis. J Therm Anal Calorim. 2003;74:85–96.CrossRefGoogle Scholar
  27. 27.
    Živković D, Minić D, Manasijević D, Kostov A, Talijan N, Balanović Lj, Mitovski A, Živković Ž. Thermodynamic analysis and characterization of alloys in Bi–Cu–Sb system. J Min Metall Sect B Metall. 2010;46:105–11.CrossRefGoogle Scholar
  28. 28.
    Živković D, Mitovski A, Balanović Lj, Manasijević D, Živković Ž. Thermodynamic analysis of liquid In–Sn alloys using Oelsen calorimetry. J Therm Anal Calorim. 2010. doi: 10.1007/s10973-010-0785-x.
  29. 29.
    Bissengaliyeva MR, Bekturganov NS, Gogol DB. Researches by the method of low-temperature adiabatic calorimetry and quantum chemical computation of vibrational states. J Therm Anal Calorim. 2010;101:49–58.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Ljubiša Balanović
    • 1
  • Dragana Živković
    • 1
  • Aleksandra Mitovski
    • 1
  • Dragan Manasijević
    • 1
  • Živan Živković
    • 1
  1. 1.Technical FacultyUniversity of BelgradeBorSerbia

Personalised recommendations