Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 104, Issue 1, pp 13–22 | Cite as

A short review and an empirical method for estimating the absorbed enthalpy of formation and the absolute enthalpy of dried microbial biomass for use in studies on the thermodynamics of microbial growth

  • Edwin H. Battley
Article

Abstract

The equation Δr X = Δr H − Δr Q represents a calculated free-energy change when the exchange of absorbed thermal energy in a chemical system represented by TΔr S in the Gibbs free-energy equation is replaced by Δr Q. The symbol Q is used in place of H [enthalpy = H T  − H 0 = H T ] to represent absorbed thermal energy. Acquiring the experimental data for determining both S and Q requires the use of a low-temperature calorimeter to measure C p as a function of T/K and these are not generally available. In a previous study it was demonstrated that for one unit-carbon formula dry weight of cells, Δf S biomass = − 0.813 ∑S atoms and S biomass = 0.187 ∑S atoms, where ∑S atoms represents the sum of the entropies of the numbers and kinds of atoms in the biomass. Using similar techniques, it is shown here that Δf Q biomass = − 0.648 ∑Q atoms and that Q biomass = 0.352 ∑Q atoms, where ∑Q atoms represents the sum of the absorbed thermal energies of the numbers and kinds of atoms in the biomass. Because mathematically the value of TS for solid substances is twice that of Q for the same T/K (usually referenced at 298.15 K), one of these values must be physically incorrect. There cannot be two different values for the quantity of thermal energy which must be absorbed to raise the temperature of the same quantity of the same substance from 0 K to a given temperature. The argument is made that the use of Q is preferable to the use of S in the calculation of free-energy changes.

Keywords

Absorbed thermal energy Entropy Enthalpy Absorbed thermal energy of formation Microbial growth Microbial growth-process equations 

References

  1. 1.
    Battley EH. The thermodynamics of cellular growth. In: Gallagher PK, series editor Handbook of thermal analysis and calorimetry, vol 4, From macromolecules to man (volume editor Kemp RB) Chapter 5. Amsterdam: Elsevier; 1999. p. 219–266 (Table 2, p. 236).Google Scholar
  2. 2.
    Battley EH. Growth-reaction equations for Saccharomyces cerevisiae. Physiol Plant. 1960;13:192–203.CrossRefGoogle Scholar
  3. 3.
    Battley EH. Energetics of microbial growth. New York: Wiley; 1987. p. 450.Google Scholar
  4. 4.
    Battley EH. The thermodynamics of growth of Escherichia coli K-12 on succinic acid. Pure Appl Chem. 1993;65:1881–6.CrossRefGoogle Scholar
  5. 5.
    Battley EH. A reevaluation of the thermodynamics of growth of Saccharomyces cerevisiae on glucose, ethanol, and acetic acid. Can J Microbiol. 1995;41:388–98.CrossRefGoogle Scholar
  6. 6.
    Battley EH. On the thermodynamics of growth of Pseudomonas saccharophila. Can J Microbiol. 1996;42:38–45.CrossRefGoogle Scholar
  7. 7.
    Wagman DD, Evans WH, Parker VB, Schuum RH, Halow I, Bailey SM, Churney KL, Nuttall RL. The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data. 1982;11(2):7a = (2–10). 7b = (2–11)Google Scholar
  8. 8.
    Battley EH, Putnam RI, Boerio-Goates J. Heat capacity measurements from 10 K to 300 K and derived thermodynamic functions of lyophilized cells of Saccharomyces cerevisiae including the absolute entropy and the entropy of formation at 298.15 K. Thermochim Acta. 1997;298:37–46.CrossRefGoogle Scholar
  9. 9.
    Klotz IM. Chemical thermodynamics: basic theory and methods. 2nd ed. New York: W A Benjamin; 1963. p. 129.Google Scholar
  10. 10.
    Morrison P. A thermodynamic characterization of self-reproduction. Rev Mod Phys. 1964;36:517–24. (Copyright 1964 by the American Physical Society).CrossRefGoogle Scholar
  11. 11.
    Battley EH, Stone JR. On the inequality of Q o and TΔS o with respect to solid state organic substances of biological importance. Thermochim Acta. 2000;360:1–9.CrossRefGoogle Scholar
  12. 12.
    Battley EH. A theoretical approach to the study of the thermodynamics of growth of Saccharomyces cerevisiae (Hansen). Physiol Plant. 1960;13:674–86.CrossRefGoogle Scholar
  13. 13.
    Battley EH. On the use of ΔQ o rather than TΔS o in the calculation of ΔG o accompanying the oxidation or fermentation of catabolic substrates of biological importance in their standard states. Thermochim Acta. 2002;394:313–27. (Invert the data in column 4 of Table 7).CrossRefGoogle Scholar
  14. 14.
    Duclaux E. Traité de Microbiologie. Tome III. Paris: Masson et Cie; 1900. p. 378.Google Scholar
  15. 15.
    Battley EH. An empirical method for estimating the entropy of formation and the absolute entropy of dried microbial biomass for use in studies on the thermodynamics of microbial growth. Thermochim Acta. 1999;326:7–15.CrossRefGoogle Scholar
  16. 16.
    Hutchens JO, Cole AC, Stout JW. Heat capacities from 11 to 305 K and entropies of hydrated and anhydrous bovine zinc insulin and bovine chymotrypsinogen A. J Biol Chem. 1969;244:26–32.Google Scholar
  17. 17.
    Von Stockar U, Gustafsson L, Larsson C, Marison I, Tissot P, Gnaiger E. Thermodynamic considerations in constructing energy balances for cellular growth. Biochim Biophys Acta. 1993;1183:221–40.CrossRefGoogle Scholar
  18. 18.
    Tribus M, McIrvine EC. Energy and information. Sci Am. 1971;229:179–88. (Reprinted with permission. Copyright 1971 Scientific American, a division of Nature America, Inc. All rights reserved).CrossRefGoogle Scholar
  19. 19.
    Cox JD, Wagman DD, Medvedef VA, editors. Codata key values for thermodynamics. New York: Hemisphere; 1989.Google Scholar
  20. 20.
    Hutchens JO, Stout JW. Heat capacities from 11 to 305 K and entropies of l-alanine and glycine. J Am Chem Soc. 1960;82:4813–5.CrossRefGoogle Scholar
  21. 21.
    Hutchens JO, Cole AG, Robie RA, Stout JW. Heat capacities from 11 to 305 K. Entropies and free energies of formation of l-asparagine monohydrate, l-aspartic acid, l-glutamic acid, and l-glutamine. J Biol Chem. 1963;236:2407–12.Google Scholar
  22. 22.
    Boerio-Goates J. Heat capacities and thermodynamic functions of crystalline α-d-glucose at temperatures from 10 K to 340 K. J Chem Thermodyn. 1991;23:4303–9.Google Scholar
  23. 23.
    Hutchens JO, Cole AC, Robie RA, Stout JW. Heat capacities from 11 to 305 K, entropies and free energy of formation of glycylglycine. J Biol Chem. 1969;244:33–5.Google Scholar
  24. 24.
    Hutchens JO, Cole AG, Stout JW. Entropies and free energy of formation of valine, l-isoleucine, and l-leucine. J Phys Chem. 1963;67:1128–30.CrossRefGoogle Scholar
  25. 25.
    Wirth HE, Droege JW, Wood JH. Low temperature heat capacity of palmitic acid and methyl palmitate. J Phys Chem. 1956;60:917–8.CrossRefGoogle Scholar
  26. 26.
    Cole AG, Hutchens JO, Stout JW. Heat capacities from 11 to 305 K and entropies of l-phenylalanine, l-proline, l-tryptophan, and l-tyrosine. Some free energies of formation. J Phys Chem. 1963;67:1852–5.CrossRefGoogle Scholar
  27. 27.
    Hutchens JO, Cole AG, Stout JW. Heat capacities from 11 to 305 K, entropy, enthalpy, and free energy of formation of serine. J Biol Chem. 1963;239:4194–5.Google Scholar
  28. 28.
    Vanderzee CR, Westrum E. Succinic acid. Heat capacities and thermodynamic properties from 5 to 328 K. An efficient drying procedure. J Chem Thermodyn. 1970;2:681–7.CrossRefGoogle Scholar
  29. 29.
    Putnam RL, Boerio-Goates J. Heat capacity measurements and thermodynamic functions of crystalline sucrose at temperatures from 5 K to 342 K. Revised values for Δf G (sucrose, cr, 298.15 K), Δf G (sucrose, aq, 298.15 K), S (sucrose, aq, 298.15 K), and Δr G (298.15 K) for the hydrolysis of aqueous sucrose. J Chem Thermodyn. 1993;25:607–13.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Department of Ecology and EvolutionStony Brook UniversityStony BrookUSA
  2. 2.Stony BrookUSA

Personalised recommendations