Journal of Thermal Analysis and Calorimetry

, Volume 103, Issue 1, pp 23–27 | Cite as

Synthesis and characterisation of the compound CoSbS

  • R. Carlini
  • C. Artini
  • G. Borzone
  • R. Masini
  • G. Zanicchi
  • G. A. Costa


In the search for new intermetallic materials with high thermoelectric performances, the Co–Sb–S ternary system has been explored and polycrystalline CoSbS samples have been prepared by a vapour phase technique starting from the pure elements. The crystal cell of CoSbS belongs to the Pbca space group and shows an orthorhombic structural arrangement with the following lattice parameters: a = 5.8341(2) Å; b = 5.9477(2) Å, and c = 11.6540(4) Å. The structure belongs to the pyrite–marcasite family, as Co forms tilted corner- and edge-sharing octahedra with three Sb and three S atoms. Scanning electronic microscopy (SEM), electron-probe microanalysis (EPMA) and X-ray powder diffraction were used to investigate the microstructure and to carry out the structural analysis; the crystal structure was refined by the Rietveld method using the DBWS-9807 program. The thermal stability of CoSbS was investigated referring to the ternary Co–S–Sb phase diagram and by differential thermal analysis (DTA) measurements. Thermoelectric power measurements at room temperature were also performed by a home-made instrument.


Thermoelectrics Intermetallics Seebeck effect Phase stability 



The authors gratefully acknowledge Dr. D. Macciò for his helpful contribution with DTA measurements.


  1. 1.
    Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7:105–14.CrossRefGoogle Scholar
  2. 2.
    Kawaharada Y, Kurosaki K, Uno M, Yamanaka S. Thermoelectric properties of CoSb3. J Alloys Compd. 2001;315:193–7.CrossRefGoogle Scholar
  3. 3.
    Zhang JX, Lu QM, Liu KG, Zhang L, Zhou ML. Synthesis and thermoelectric properties of CoSb3 compounds by spark plasma sintering. Mater Lett. 2004;58:1981–4.CrossRefGoogle Scholar
  4. 4.
    Furuyama S, Iida T, Matsui S, Akasaka M, Nishio K, Takanashi Y. Thermoelectric properties of undoped p-type CoSb3 prepared by vertical Bridgman crystal growth and spark plasma sintering. J Alloys Compd. 2006;415:251–6.CrossRefGoogle Scholar
  5. 5.
    Nakamoto G, Yoshida Y, Vu LV, Huong NT, Anh DTK, Kurisu M. Effect of segregated impurity phases on lattice thermal conductivity in Y-added CoSb3. Scr Mater. 2007;56:269–72.CrossRefGoogle Scholar
  6. 6.
    Jiang YP, Jia XP, Su TC, Dong N, Yu FR, Tian YJ, Guo W, Xu HW, Deng L, Ma HA. Thermoelectric properties of SmxCo4Sb12 prepared by high pressure and high temperature. J Alloys Compd. 2010;493:535–8.CrossRefGoogle Scholar
  7. 7.
    Mi JL, Zhao XB, Zhu TJ, Tu JP. Nanosized La filled CoSb3 prepared by a solvothermal-annealing method. Mater Lett. 2008;62:2363–5.CrossRefGoogle Scholar
  8. 8.
    Wojciechowski KT. Effect of tellurium doping on the thermoelectric properties of CoSb3. Mater Res Bull. 2002;37:2023–33.CrossRefGoogle Scholar
  9. 9.
    Chitroub M, Besse F, Scherrer H. Thermoelectric properties of semi-conducting compound CoSb3 doped with Pd and Te. J Alloys Compd. 2009;467:31–4.CrossRefGoogle Scholar
  10. 10.
    Kim I-H, Park K-H, Ur S-C. Thermoelectric properties of Sn-doped CoSb3 prepared by encapsulated induction melting. J Alloys Compd. 2007;442:351–4.CrossRefGoogle Scholar
  11. 11.
    Wojciechowski KT, Tobola J, Leszczyński J. Thermoelectric properties and electronic structure of CoSb doped with Se and Te. J Alloys Compd. 2003;361:19–27.CrossRefGoogle Scholar
  12. 12.
    Kim IH, Ur SC. Electronic transport properties of Fe-doped CoSb3 prepared by encapsulated induction melting. Mater Lett. 2007;61:2446–50.CrossRefGoogle Scholar
  13. 13.
    Kitagawa H, Wakatsuki M, Nagaoka H, Noguchi H, Isoda Y, Hasezaki K, Noda Y. Temperature dependence of thermoelectric properties of Ni-doped CoSb3. J Phys Chem Solids. 2005;66:1635–9.CrossRefGoogle Scholar
  14. 14.
    Al-Ghamdi AA. Thermoelectric power (TEP) of layered chalcogenides GaTe crystals. J Therm Anal Calorim. 2008;94:597–600.CrossRefGoogle Scholar
  15. 15.
    Vaqueiro P, Sobany GG, Stindl M. Structure and electrical transport properties of the ordered skutterudites MGe1.5S1.5 (M = Co, Rh, Ir). J Solid State Chem. 2008;181:768–76.CrossRefGoogle Scholar
  16. 16.
    Bos JWG, Cava RJ. Synthesis, crystal structure and thermoelectric properties of IrSn1.5Te1.5-based skutterudites. Solid State Commun. 2007;141:38–41.CrossRefGoogle Scholar
  17. 17.
    Laufek F, Navrátil, Plášil J, Plecháček T. Crystal structure determination of CoGeTe from powder diffraction data. J Alloys Compd. 2008;460:155–9.CrossRefGoogle Scholar
  18. 18.
    Vaqueiro P, Sobany GG, Guinet F, Leyva-Bailen P. Synthesis and characterization of the anion-ordered tellurides MGeTe. Solid State Sci. 2009;11:1077–82.CrossRefGoogle Scholar
  19. 19.
    Schenck R, Von der Forst P. Gleichgewichtsstudien and erzbildenden Sulfiden III. Z Anorg Allg Chem. 1942;249:76–87.CrossRefGoogle Scholar
  20. 20.
    Allazov MR, Gulieva ZT. Physicochemical interaction in the CoS–Sb and NiS–Sb systems. Russ J Inorg Chem. 1988;33:1075–8.Google Scholar
  21. 21.
    Young RA, Sakthiel A, Moss TS, Paiva-Santos CO. DBWS-9411, an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers. J Appl Cryst. 1995;28:366–7.CrossRefGoogle Scholar
  22. 22.
    Uher C. Skutterudite-based thermoelectrics. In: Rowe DM, editor. Thermoelectrics handbook. Boca Raton: Taylor & Francis; 2006. p. 34-1–17.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • R. Carlini
    • 1
    • 2
  • C. Artini
    • 1
    • 3
  • G. Borzone
    • 1
    • 2
  • R. Masini
    • 4
  • G. Zanicchi
    • 1
    • 2
  • G. A. Costa
    • 1
    • 3
  1. 1.DCCIUniversity of GenoaGenoaItaly
  2. 2.INSTM – Genoa Research Unit of National Consortium of Materials Science and TechnologyGenoaItaly
  3. 3.CNR-SPIN GenovaGenoaItaly
  4. 4.CNR-IMEMGenoaItaly

Personalised recommendations