Journal of Thermal Analysis and Calorimetry

, Volume 104, Issue 2, pp 653–659 | Cite as

Chloro-free route to mixed-metal oxides. Synthesis of lead titanate nanoparticles from a single-source precursor route

  • Shidi Tang
  • Yuanfu Deng
  • ShuZhong Zhan


A new heterobimetallic nitrilotriacetatoperoxotitanate complex of titanium and lead [Pb(H2O)3]2[Ti2(O2)2O(nta)2]·4H2O (C6H6O6N=H3nta) was isolated in pure crystals directly from the solution containing tetrabutyl orthotitanate, hydrogen peroxoide, lead acetate, and nitrilotriacetic acid at pH = 2.0–4.0. The isolated complex was characterized by elemental analyses, IR spectrum, thermal analysis (TG), and single-crystal X-ray diffraction. The single-crystal X-ray structural analysis revealed that the titanium atom is N,O,O′,O′′-chelated by the nitrilotriacetate and O,O′-chelated by the peroxo group and was coordinated to the bridging O atom in an overall pentagonal-bipyramidal geometry. The thermal decomposition of this precursor led to the formation of phase-pure lead titanate (PbTiO3) at ≥450 °C. The morphology, microstructure, and crystalline of the resulting PbTiO3 product have been characterized by BET, transmission electron microscopy, and powder X-ray diffraction. The TEM micrographs revealed that the size of the as-synthesized crystallines to be 50–100 nm range. The BET measurement revealed that the PbTiO3 powders had a surface area of 5.6 m2/g.


Single-source precursor Lead titanate (PbTiO3Nitrilotriacetatoperoxotitanate Carboxylate-containing ligands 



We thank “The Fundamental Research Funds for the Central Universities, SCUT (No. 2009ZM0313)”. We also thank “The National Science Foundation of China (No. B5080320)” and the “SRP” of South China University of Technology.


  1. 1.
    Jaffe WJ, Cook R, Jaffe H. Piezoelectric ceramics. New York: Academic Press; 1971.Google Scholar
  2. 2.
    Lines ME, Glass AM. Principles and applications of ferroelectrics and related materials. Oxford, UK: Oxford University Press; 2001.CrossRefGoogle Scholar
  3. 3.
    Scott JF. Applications of modern ferroelectrics. Science. 2007;315:954–9.CrossRefGoogle Scholar
  4. 4.
    Yang Y, Wang XH, Sun CK, Li LT. Photoluminescence of high-aspect-ratio PbTiO3 nanotube arrays. J Am Ceram Soc. 2008;91:3820–2.CrossRefGoogle Scholar
  5. 5.
    Garnweitner G, Hentschel J, Antonietti M, Niederberger M. Nonaqueous synthesis of amorphous powder precursors for nanocrystalline PbTiO3, Pb(Zr, Ti)O3, and PbZrO3. Chem Mater. 2005;17:4594–9.CrossRefGoogle Scholar
  6. 6.
    Ishikawa K, Yoshikawa K, Okada N. Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys Rev B. 1998;37:5852–5.CrossRefGoogle Scholar
  7. 7.
    Zhong WL, Wang YG, Zhang PL, Wu BD. Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys Rev B. 1994;50:698–703.CrossRefGoogle Scholar
  8. 8.
    Liu C, Zou BS, Rondinone AJ, Zhang ZJ. Sol-gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles. J Am Chem Soc. 2001;123:4344–5.CrossRefGoogle Scholar
  9. 9.
    Ren ZH, Xu G, Liu Y, Wei X, Zhu YH, Zhang XB, Lv GL, Wang YW, Zeng YW, Du PY, Weng WJ, Shen G, Jiang JZ, Han GR. PbTiO3 nanofibers with edge-shared TiO6 octahedra. J Am Chem Soc. 2010;132:5572–3.CrossRefGoogle Scholar
  10. 10.
    Teff DJ, Caulton KG. Hydrolytic synthesis of lead oxo isopropoxides and their reaction with M((OPr)Pri)4 (M = Ti, Zr): comparisons and contrasts. Inorg Chem. 1998;37:2554–62.CrossRefGoogle Scholar
  11. 11.
    Veith M. Molecular precursors for (nano) materials—a one step strategy. J Chem Soc Dalton Trans. 2002;32:2405–12.CrossRefGoogle Scholar
  12. 12.
    Hubert-Pfalzgraf LG. Some trends in the design of homo- and heterometallic molecular precursors of high-tech oxides. Inorg Chem Commun. 2003;6:102–20.CrossRefGoogle Scholar
  13. 13.
    Kessler VG. Molecular structure design and synthetic approaches to the heterometallic alkoxide complexes (soft chemistry approach to inorganic materials by the eyes of a crystallographer). Chem Commun. 2003;39:1213–22.CrossRefGoogle Scholar
  14. 14.
    Veith M, Haas M, Huch V. Single source precursor approach for the sol–gel synthesis of nanocrystalline ZnFe2O4 and zinc-iron oxide composites. Chem Mater. 2005;17:95–101.CrossRefGoogle Scholar
  15. 15.
    Li JG, Yang X, Ishigaki T. Urea coordinated titanium trichloride TiIII[OC(NH)2]6Cl3: a single molecular precursor yielding highly visible light responsive TiO2 nanocrystallites. J Phys Chem B. 2006;110:14611–8.CrossRefGoogle Scholar
  16. 16.
    Hamid M, Tahir AA, Mazhar M, Zeller M, Hunter AD. Heterobimetallic molecular cages for the deposition of Cu/Ti and Cu/Zn mixed-metal oxides. Inorg Chem. 2007;46:4120–7.CrossRefGoogle Scholar
  17. 17.
    Malghe YS, Dharwadkar SR. LaCrO3 powder from lanthanum trisoxalatochromate(III) (LTCR) precursor-Microwave aided synthesis and thermal characterization. J Therm Anal Calorim. 2008;95:915–8.CrossRefGoogle Scholar
  18. 18.
    Thomas P, Dwarakanath K, Varma KBR, Kutty TRN. Synthesis of nanoparticles of the giant dielectric material, CaCu3Ti4O12 from a precursor route. J Therm Anal Calorim. 2009;95:267–72.CrossRefGoogle Scholar
  19. 19.
    Tahir AA, Mazhar M, Hamid M, Wijayantha KGU, Molloy KC. Photooxidation of water by NiTiO3 deposited from single source precursor [Ni2Ti2(OEt)2(μ-OEt)6(acac)4] by AACVD. Dalton Trans. 2009;38:3674–80.CrossRefGoogle Scholar
  20. 20.
    Gonsalves LR, Verenkar VMS, Mojumdar SC. Preparation and characterization of Co0.5Zn0.5Fe2(C4H2O4)3·6N2H4. J Therm Anal Calorim. 2009;96:53–7.CrossRefGoogle Scholar
  21. 21.
    Gawas UB, Mojumdar SC, Verenkar VMS. Synthesis, characterization, infrared studies, and thermal analysis of Mn0.6Zn0.4(C4H2O4)3·6N2H4 and its decomposition product Mn0.6Zn0.4Fe2O4. J Therm Anal Calorim. 2010;100:867–71.CrossRefGoogle Scholar
  22. 22.
    Thurston J, Whitmire KH. Heterobimetal lic bismuth-transition metal salicylate complexes as molecular precursors for ferroelectric materials. Synthesis and structure of Bi2M2(sal)4(Hsal)4(OR)4 (M = Nb, Ta; R = CH2CH3, CH(CH3)2, Bi2Ti3(sal)8(Hsal)2, and Bi2Ti4((OPr)Pri)(sal)10(Hsal) (sal = O2CC6H4–2–O; Hsal = O2CC6H4–2–OH). Inorg Chem. 2002;41:4194–205.CrossRefGoogle Scholar
  23. 23.
    Zhang HT, Yang JH, Shpanchenko RV, Abakumov AM, Hadermann J, Clérac R, Dikarev EV. New class of single-source precursors for the synthesis of main group-transition metal oxides: heterobimetallic Pb–Mn β-diketonates. Inorg Chem. 2009;48:8480–8.CrossRefGoogle Scholar
  24. 24.
    Chae HK, Payne DA, Xu Z, Ma L. Molecular structure of a new lead titanium bimetallic alkoxide complex, [PbTi24-O)(OOCCH3)(OCH2CH3)]2: evolution of structure on heat treatment and the formation of thin-layer dielectrics. Chem Mater. 1994;6:1589–92.CrossRefGoogle Scholar
  25. 25.
    Daniele S, Papiernik R, Hubert-Pfalzgraf LG, Jagner S, Håkansson M. Single-source precursors of lead titanate: synthesis, molecular structure and reactivity of Pb2Ti24-O) (μ3-O-i-Pr)2(μ-O-iPr)(O-i-Pr)4. Inorg Chem. 1995;34:628–32.CrossRefGoogle Scholar
  26. 26.
    Hubert-Pfalzgraf LG, Daniele S, Papiernik R, Massiani MC, Septe B, Vaissermann J, Daran JC. Solution routes to lead titanate: synthesis, molecular structure and reactivity of the Pb–Ti and Pb–Zr species formed between various lead oxide precursors and titanium or zirconium alkoxides. Molecular structure of Pb2Ti24-O)(OAc)2(OPri)8 and of PbZr34-O)(OAc)2(OPri)10. J Mater Chem. 1997;7:753–62.CrossRefGoogle Scholar
  27. 27.
    Boulmaâz S, Papiernik R, Hubert-Pfalzgraf LG, Septe B, Vaissermann J. J Mater Chem. 1997;7:2053.CrossRefGoogle Scholar
  28. 28.
    Mishra S, Daniele S, Hubert-Pfalzgraf LG. Metal 2-ethylhexanoates and related compounds as useful precursors in materials science. Chem Soc Rev. 2007;37:1770–87. and reference therein.Google Scholar
  29. 29.
    Zhou ZH, Deng YF, Jiang YQ, Wan HL, Ng SW. The first structural examples of tricitratotitanate [Ti(H2cit)3]2− dianions. Dalton Trans. 2003;33:2636–8.CrossRefGoogle Scholar
  30. 30.
    Deng YF, Zhou ZH, Wan HL, Tsai KR. Ammonium barium citrato peroxotitanate(IV) Ba2(NH4)2[Ti4(O2)4(Hcit)2(cit)2]·10H2O: a molecular precursor of stoichiometric BaTi2O5. Inorg Chem Commun. 2004;7:169–72.CrossRefGoogle Scholar
  31. 31.
    Deng YF, Zhou ZH, Wan HL. pH-Dependent isolations and spectroscopic, structural, and thermal studies of titanium citrate complexes. Inorg Chem. 2004;43:6266–73.CrossRefGoogle Scholar
  32. 32.
    Deng YF, Zhang HL, Hong QM, Weng WZ, Wan HL, Zhou ZH. Titanium-based mixed oxides from a series of titanium(IV) citrate complexes. J Solid State Chem. 2007;180:3152–9.CrossRefGoogle Scholar
  33. 33.
    Deng YF, Zhou ZH. A stable water-soluble molecular precursor for the preparation of stoichiometric strontium titanate. Inorg Chem Commun. 2008;11:1064–6.CrossRefGoogle Scholar
  34. 34.
    Zhou ZH, Hong QM, Deng YF. Pure Ti-based mixed oxides prepared from the thermal decompositions of molecular precursors of peroxo complexes coordinated with tris(hydroxycarbonylmethyl) amine trivalent anion Titanate(IV). Acta Chim Sinica. 2004;62:2379–85.Google Scholar
  35. 35.
    Deng YF, Tang SD, Lao LQ, Zhan SZ. Synthesis of magnesium titanate nanocrystallites from a cheap and water-soluble single source precursor. Inorg Chim Acta. 2010;363:827–9.CrossRefGoogle Scholar
  36. 36.
    Deng YF, Tang SD, Wu SP. Synthesis of calcium titanate from [Ca(H2O)3]2[Ti2(O2)2O(NC6H6O6)2]·2H2O as a cheap single-source precursor. Solid State Sci. 2010;12:339–44.CrossRefGoogle Scholar
  37. 37.
    Deng YF, Lv QY, Wu SP, Zhan SZ. Heterobimetallic peroxo-titanium(IV) nitrilotriacetate complexes as single source precursors for preparation of MTiO3 (M = Co, Ni and Zn). Dalton Trans. 2010;39:2497–503.CrossRefGoogle Scholar
  38. 38.
    Sheldrick GM. Schelxl-97, Program for refinement of crystal structure. Göttingen, Germany: University of Göttingen; 1997.Google Scholar
  39. 39.
    Kakihana M, Tada M, Shiro M, Petrykin V, Osda M, Nakamura Y. Structure and stability of water soluble (NH4)8[Ti4(C6H4O7)4(O2)4]·8H2O. Inorg Chem. 2001;40:891–4.CrossRefGoogle Scholar
  40. 40.
    Kourgiantakis M, Matzapetakis M, Raptopoulou CP, Terzis A, Salifoglou A. Lead-citrate chemistry. Synthesis, spectroscopic and structural studies of a novel lead(II)-citrate aqueous complex. Inorg Chim Acta. 2000;297:134–8.CrossRefGoogle Scholar
  41. 41.
    Moon J, Li T, Randall CA, Adair JH. Low temperature synthesis of lead titanate by a hydrothermal method. J Mater Res. 1997;12:189–97.CrossRefGoogle Scholar
  42. 42.
    Selbach SM, Wang GZ, Einarsrud MA, Grande T. Decomposition and crystallization of a sol–gel-derived PbTiO3 precursor. J Am Ceram Soc. 2007;90:2649–52.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Department of Chemistry, School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations