Skip to main content
Log in

Chloro-free route to mixed-metal oxides. Synthesis of lead titanate nanoparticles from a single-source precursor route

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A new heterobimetallic nitrilotriacetatoperoxotitanate complex of titanium and lead [Pb(H2O)3]2[Ti2(O2)2O(nta)2]·4H2O (C6H6O6N=H3nta) was isolated in pure crystals directly from the solution containing tetrabutyl orthotitanate, hydrogen peroxoide, lead acetate, and nitrilotriacetic acid at pH = 2.0–4.0. The isolated complex was characterized by elemental analyses, IR spectrum, thermal analysis (TG), and single-crystal X-ray diffraction. The single-crystal X-ray structural analysis revealed that the titanium atom is N,O,O′,O′′-chelated by the nitrilotriacetate and O,O′-chelated by the peroxo group and was coordinated to the bridging O atom in an overall pentagonal-bipyramidal geometry. The thermal decomposition of this precursor led to the formation of phase-pure lead titanate (PbTiO3) at ≥450 °C. The morphology, microstructure, and crystalline of the resulting PbTiO3 product have been characterized by BET, transmission electron microscopy, and powder X-ray diffraction. The TEM micrographs revealed that the size of the as-synthesized crystallines to be 50–100 nm range. The BET measurement revealed that the PbTiO3 powders had a surface area of 5.6 m2/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jaffe WJ, Cook R, Jaffe H. Piezoelectric ceramics. New York: Academic Press; 1971.

    Google Scholar 

  2. Lines ME, Glass AM. Principles and applications of ferroelectrics and related materials. Oxford, UK: Oxford University Press; 2001.

    Book  Google Scholar 

  3. Scott JF. Applications of modern ferroelectrics. Science. 2007;315:954–9.

    Article  CAS  Google Scholar 

  4. Yang Y, Wang XH, Sun CK, Li LT. Photoluminescence of high-aspect-ratio PbTiO3 nanotube arrays. J Am Ceram Soc. 2008;91:3820–2.

    Article  CAS  Google Scholar 

  5. Garnweitner G, Hentschel J, Antonietti M, Niederberger M. Nonaqueous synthesis of amorphous powder precursors for nanocrystalline PbTiO3, Pb(Zr, Ti)O3, and PbZrO3. Chem Mater. 2005;17:4594–9.

    Article  CAS  Google Scholar 

  6. Ishikawa K, Yoshikawa K, Okada N. Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys Rev B. 1998;37:5852–5.

    Article  Google Scholar 

  7. Zhong WL, Wang YG, Zhang PL, Wu BD. Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys Rev B. 1994;50:698–703.

    Article  CAS  Google Scholar 

  8. Liu C, Zou BS, Rondinone AJ, Zhang ZJ. Sol-gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles. J Am Chem Soc. 2001;123:4344–5.

    Article  CAS  Google Scholar 

  9. Ren ZH, Xu G, Liu Y, Wei X, Zhu YH, Zhang XB, Lv GL, Wang YW, Zeng YW, Du PY, Weng WJ, Shen G, Jiang JZ, Han GR. PbTiO3 nanofibers with edge-shared TiO6 octahedra. J Am Chem Soc. 2010;132:5572–3.

    Article  CAS  Google Scholar 

  10. Teff DJ, Caulton KG. Hydrolytic synthesis of lead oxo isopropoxides and their reaction with M((OPr)Pri)4 (M = Ti, Zr): comparisons and contrasts. Inorg Chem. 1998;37:2554–62.

    Article  CAS  Google Scholar 

  11. Veith M. Molecular precursors for (nano) materials—a one step strategy. J Chem Soc Dalton Trans. 2002;32:2405–12.

    Article  Google Scholar 

  12. Hubert-Pfalzgraf LG. Some trends in the design of homo- and heterometallic molecular precursors of high-tech oxides. Inorg Chem Commun. 2003;6:102–20.

    Article  CAS  Google Scholar 

  13. Kessler VG. Molecular structure design and synthetic approaches to the heterometallic alkoxide complexes (soft chemistry approach to inorganic materials by the eyes of a crystallographer). Chem Commun. 2003;39:1213–22.

    Article  Google Scholar 

  14. Veith M, Haas M, Huch V. Single source precursor approach for the sol–gel synthesis of nanocrystalline ZnFe2O4 and zinc-iron oxide composites. Chem Mater. 2005;17:95–101.

    Article  CAS  Google Scholar 

  15. Li JG, Yang X, Ishigaki T. Urea coordinated titanium trichloride TiIII[OC(NH)2]6Cl3: a single molecular precursor yielding highly visible light responsive TiO2 nanocrystallites. J Phys Chem B. 2006;110:14611–8.

    Article  CAS  Google Scholar 

  16. Hamid M, Tahir AA, Mazhar M, Zeller M, Hunter AD. Heterobimetallic molecular cages for the deposition of Cu/Ti and Cu/Zn mixed-metal oxides. Inorg Chem. 2007;46:4120–7.

    Article  CAS  Google Scholar 

  17. Malghe YS, Dharwadkar SR. LaCrO3 powder from lanthanum trisoxalatochromate(III) (LTCR) precursor-Microwave aided synthesis and thermal characterization. J Therm Anal Calorim. 2008;95:915–8.

    Article  Google Scholar 

  18. Thomas P, Dwarakanath K, Varma KBR, Kutty TRN. Synthesis of nanoparticles of the giant dielectric material, CaCu3Ti4O12 from a precursor route. J Therm Anal Calorim. 2009;95:267–72.

    Article  CAS  Google Scholar 

  19. Tahir AA, Mazhar M, Hamid M, Wijayantha KGU, Molloy KC. Photooxidation of water by NiTiO3 deposited from single source precursor [Ni2Ti2(OEt)2(μ-OEt)6(acac)4] by AACVD. Dalton Trans. 2009;38:3674–80.

    Article  Google Scholar 

  20. Gonsalves LR, Verenkar VMS, Mojumdar SC. Preparation and characterization of Co0.5Zn0.5Fe2(C4H2O4)3·6N2H4. J Therm Anal Calorim. 2009;96:53–7.

    Article  CAS  Google Scholar 

  21. Gawas UB, Mojumdar SC, Verenkar VMS. Synthesis, characterization, infrared studies, and thermal analysis of Mn0.6Zn0.4(C4H2O4)3·6N2H4 and its decomposition product Mn0.6Zn0.4Fe2O4. J Therm Anal Calorim. 2010;100:867–71.

    Article  CAS  Google Scholar 

  22. Thurston J, Whitmire KH. Heterobimetal lic bismuth-transition metal salicylate complexes as molecular precursors for ferroelectric materials. Synthesis and structure of Bi2M2(sal)4(Hsal)4(OR)4 (M = Nb, Ta; R = CH2CH3, CH(CH3)2, Bi2Ti3(sal)8(Hsal)2, and Bi2Ti4((OPr)Pri)(sal)10(Hsal) (sal = O2CC6H4–2–O; Hsal = O2CC6H4–2–OH). Inorg Chem. 2002;41:4194–205.

    Article  CAS  Google Scholar 

  23. Zhang HT, Yang JH, Shpanchenko RV, Abakumov AM, Hadermann J, Clérac R, Dikarev EV. New class of single-source precursors for the synthesis of main group-transition metal oxides: heterobimetallic Pb–Mn β-diketonates. Inorg Chem. 2009;48:8480–8.

    Article  CAS  Google Scholar 

  24. Chae HK, Payne DA, Xu Z, Ma L. Molecular structure of a new lead titanium bimetallic alkoxide complex, [PbTi24-O)(OOCCH3)(OCH2CH3)]2: evolution of structure on heat treatment and the formation of thin-layer dielectrics. Chem Mater. 1994;6:1589–92.

    Article  CAS  Google Scholar 

  25. Daniele S, Papiernik R, Hubert-Pfalzgraf LG, Jagner S, Håkansson M. Single-source precursors of lead titanate: synthesis, molecular structure and reactivity of Pb2Ti24-O) (μ3-O-i-Pr)2(μ-O-iPr)(O-i-Pr)4. Inorg Chem. 1995;34:628–32.

    Article  CAS  Google Scholar 

  26. Hubert-Pfalzgraf LG, Daniele S, Papiernik R, Massiani MC, Septe B, Vaissermann J, Daran JC. Solution routes to lead titanate: synthesis, molecular structure and reactivity of the Pb–Ti and Pb–Zr species formed between various lead oxide precursors and titanium or zirconium alkoxides. Molecular structure of Pb2Ti24-O)(OAc)2(OPri)8 and of PbZr34-O)(OAc)2(OPri)10. J Mater Chem. 1997;7:753–62.

    Article  CAS  Google Scholar 

  27. Boulmaâz S, Papiernik R, Hubert-Pfalzgraf LG, Septe B, Vaissermann J. J Mater Chem. 1997;7:2053.

    Article  Google Scholar 

  28. Mishra S, Daniele S, Hubert-Pfalzgraf LG. Metal 2-ethylhexanoates and related compounds as useful precursors in materials science. Chem Soc Rev. 2007;37:1770–87. and reference therein.

    Google Scholar 

  29. Zhou ZH, Deng YF, Jiang YQ, Wan HL, Ng SW. The first structural examples of tricitratotitanate [Ti(H2cit)3]2− dianions. Dalton Trans. 2003;33:2636–8.

    Article  Google Scholar 

  30. Deng YF, Zhou ZH, Wan HL, Tsai KR. Ammonium barium citrato peroxotitanate(IV) Ba2(NH4)2[Ti4(O2)4(Hcit)2(cit)2]·10H2O: a molecular precursor of stoichiometric BaTi2O5. Inorg Chem Commun. 2004;7:169–72.

    Article  CAS  Google Scholar 

  31. Deng YF, Zhou ZH, Wan HL. pH-Dependent isolations and spectroscopic, structural, and thermal studies of titanium citrate complexes. Inorg Chem. 2004;43:6266–73.

    Article  CAS  Google Scholar 

  32. Deng YF, Zhang HL, Hong QM, Weng WZ, Wan HL, Zhou ZH. Titanium-based mixed oxides from a series of titanium(IV) citrate complexes. J Solid State Chem. 2007;180:3152–9.

    Article  CAS  Google Scholar 

  33. Deng YF, Zhou ZH. A stable water-soluble molecular precursor for the preparation of stoichiometric strontium titanate. Inorg Chem Commun. 2008;11:1064–6.

    Article  CAS  Google Scholar 

  34. Zhou ZH, Hong QM, Deng YF. Pure Ti-based mixed oxides prepared from the thermal decompositions of molecular precursors of peroxo complexes coordinated with tris(hydroxycarbonylmethyl) amine trivalent anion Titanate(IV). Acta Chim Sinica. 2004;62:2379–85.

    CAS  Google Scholar 

  35. Deng YF, Tang SD, Lao LQ, Zhan SZ. Synthesis of magnesium titanate nanocrystallites from a cheap and water-soluble single source precursor. Inorg Chim Acta. 2010;363:827–9.

    Article  CAS  Google Scholar 

  36. Deng YF, Tang SD, Wu SP. Synthesis of calcium titanate from [Ca(H2O)3]2[Ti2(O2)2O(NC6H6O6)2]·2H2O as a cheap single-source precursor. Solid State Sci. 2010;12:339–44.

    Article  CAS  Google Scholar 

  37. Deng YF, Lv QY, Wu SP, Zhan SZ. Heterobimetallic peroxo-titanium(IV) nitrilotriacetate complexes as single source precursors for preparation of MTiO3 (M = Co, Ni and Zn). Dalton Trans. 2010;39:2497–503.

    Article  CAS  Google Scholar 

  38. Sheldrick GM. Schelxl-97, Program for refinement of crystal structure. Göttingen, Germany: University of Göttingen; 1997.

    Google Scholar 

  39. Kakihana M, Tada M, Shiro M, Petrykin V, Osda M, Nakamura Y. Structure and stability of water soluble (NH4)8[Ti4(C6H4O7)4(O2)4]·8H2O. Inorg Chem. 2001;40:891–4.

    Article  CAS  Google Scholar 

  40. Kourgiantakis M, Matzapetakis M, Raptopoulou CP, Terzis A, Salifoglou A. Lead-citrate chemistry. Synthesis, spectroscopic and structural studies of a novel lead(II)-citrate aqueous complex. Inorg Chim Acta. 2000;297:134–8.

    Article  CAS  Google Scholar 

  41. Moon J, Li T, Randall CA, Adair JH. Low temperature synthesis of lead titanate by a hydrothermal method. J Mater Res. 1997;12:189–97.

    Article  CAS  Google Scholar 

  42. Selbach SM, Wang GZ, Einarsrud MA, Grande T. Decomposition and crystallization of a sol–gel-derived PbTiO3 precursor. J Am Ceram Soc. 2007;90:2649–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank “The Fundamental Research Funds for the Central Universities, SCUT (No. 2009ZM0313)”. We also thank “The National Science Foundation of China (No. B5080320)” and the “SRP” of South China University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanfu Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, S., Deng, Y. & Zhan, S. Chloro-free route to mixed-metal oxides. Synthesis of lead titanate nanoparticles from a single-source precursor route. J Therm Anal Calorim 104, 653–659 (2011). https://doi.org/10.1007/s10973-010-0999-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0999-y

Keywords

Navigation