Skip to main content
Log in

Thermodynamic interactions of the alkaline earth metal ions with citric acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

By using the isothermal titration calorimetry (ITC) technique, thermodynamic parameters have been determined for reactions of the Mg2+, Ca2+, Sr2+, and Ba2+ ions with the citrate anion. The measurements were run in the Cacodylate, Pipes and Mes buffer solutions of a pH of 6, at 298.15 K, as well as in the Tricine, Tapso, and Tris–HCl buffer solutions of a pH of 8. Further, based on the results of potentiometric titration, the conditional stability constants were determined for the citrate complexes at both pH values. The effect of the reaction environment and the metal ion identity on the interaction energy with the citrate ligand and the stability of the resulting compounds have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Martin RB. Citrate binding of Al3+ and Fe3+. J Inorg Biochem. 1989;28:181–7.

    Article  Google Scholar 

  2. Beinert H, Kennedy MC. Engineering of protein bound iron-sulfur clusters. A tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes. Eur J Biochem. 1989;186:5–15.

    Article  CAS  Google Scholar 

  3. Lippard SJ. Principles of bioinorganic chemistry. Mill Valley, CA: University Science Books; 1994. p. 352.

    Google Scholar 

  4. Sheldrick B. Calcium hydrogen citrate trihydrate. Acta Crystallogr B. 1974;30:2056–7.

    Article  Google Scholar 

  5. Zacharias DE, Glusker JP. Structure of strontium citrate pentahydrate. Acta Crystallogr C. 1993;49:1732–9.

    Article  Google Scholar 

  6. Matzapetakis M, Karligiano N, Bino A, Dakanali M, Raptopoulou CP, Tangoulis V, Terzis A, Giapintzakis J, Salifoglou A. Manganese citrate chemistry: syntheses, spectroscopic studies, and structural characterizations of novel mononuclear, water-soluble manganese citrate complexes. Inorg Chem. 2000;39:4044–51.

    Article  CAS  Google Scholar 

  7. Zhou Z-H, Deng Y-F, Wan H-L. Structural diversities of cobalt(II) coordination polymers with citric acid. Cryst Growth Des. 2005;5:1109–17.

    Article  CAS  Google Scholar 

  8. Predoana L, Malic B, Zaharescu M. LaCoO3 formation from precursors obtained by water-based sol-gel method with citric acid. J Therm Anal Calorim. 2009;98:361–6.

    Article  CAS  Google Scholar 

  9. Waqas H, Quresh AH. Influence of pH on nanosized Mn–Zn ferrite synthesized by sol-gel auto combustion process. J Therm Anal Calorim. 2009;98:355–60.

    Article  CAS  Google Scholar 

  10. da Silva MFP, de Souza Carvalho FM, da Silva Martins T, de Abreu Fantini MC, Isolani PC. The role of citrate precursors on the morphology of lanthanide oxides obtained by thermal decomposition. J Therm Anal Calorim. 2010;99:385–90.

    Article  Google Scholar 

  11. Deng Y-F, Zhou Z-H, Cao Z-X, Tsai K-R. Speciation and transformation of Co(II)/Ni(II)–citrate–imidazole ternary system—synthesis, spectroscopic and structural studies. J Inorg Biochem. 2004;98:1110–6.

    Article  CAS  Google Scholar 

  12. Bates RG, Pinching GD. Resolution of the dissociation constants of citric acid at 0 to 50, and determination of certain related thermodynamic functions. J Am Chem Soc. 1949;71:1274–83.

    Article  CAS  Google Scholar 

  13. Levien BJ. A physicochemical study of aqueous citric acid solutions. J Phys Chem. 1955;59:640–4.

    Article  CAS  Google Scholar 

  14. Glusker JP, van der Helm D, Love WE, Dornberg ML, Minkin JA, Johnson CK, Patterson AL. X-ray crystal analysis of the substrates of aconitase. VI. The structures of sodium and lithium dihydrogen citrates. Acta Crystallogr. 1965;19:561–72.

    Article  CAS  Google Scholar 

  15. Holcomb M, Strumpel M, Butler WM, Nordman CE. A crystallographic study of the phase transition in rubidium dihydrogen citrate. Acta Crystallogr B. 1987;43:313–8.

    Article  Google Scholar 

  16. Gabe EJ, Glusker JP, Minkin JA, Patterson AL. X-ray crystal analysis of the substrates of aconitase. VII. The structure of lithium ammonium hydrogen citrate monohydrate. Acta Crystallogr. 1967;22:366–75.

    Article  CAS  Google Scholar 

  17. Zacharias DE, Glusker JP. Structure of a citrate double salt: potassium dihydrogen citrate-lithium potassium hydrogen citrate monohydrate. Acta Crystallogr C. 1993;49:1727–30.

    Article  Google Scholar 

  18. Martin RB. A complete ionization scheme for citric acid. J Phys Chem. 1961;65:2053–5.

    Article  CAS  Google Scholar 

  19. Strouse J. Carbon-13 NMR studies of ferrous citrates in acidic and alkaline solutions. Implications concerning the active site of aconitase. J Am Chem Soc. 1977;99:572–80.

    Article  CAS  Google Scholar 

  20. Strouse J, Layten SW, Strouse CE. Structural studies of transition metal complexes of triionized and tetraionized citrate. Models for the coordination of the citrate ion to transition metal ions in solution and at the active site of aconitase. J Am Chem Soc. 1977;99:562–72.

    Article  CAS  Google Scholar 

  21. Glusker JP. Citrate conformation and chelation: enzymatic implications. Acc Chem Res. 1980;13:345–52.

    Article  CAS  Google Scholar 

  22. Carrell HL, Glusker JP, Piercy EA, Stallings WC, Zacharias DE, Davis RL, Astbury C, Kennard CHL. Metal chelation versus internal hydrogen bonding of the.alpha.-hydroxy carboxylate group. J Am Chem Soc. 1987;109:8067–71.

    Article  CAS  Google Scholar 

  23. Brandariz I, Barriada J, Vilarino T, Sastre de Vicente M. Comparison of several calibration procedures for glass electrodes in proton concentration. Monatsh Chem. 2004;135:1475–88.

    Article  CAS  Google Scholar 

  24. Kostrowicki J, Liwo A. A general method for the determination of the stoichiometry of unknown species in multicomponent systems from physicochemical measurements. Comput Chem. 1987;11:195–210.

    Article  CAS  Google Scholar 

  25. Al-Khaldi MH, Nasr-El-Din HA, Mehta S, Al-Aamri AD. Reaction of citric acid with calcite. Chem Eng Sci. 2007;62:5880–96.

    Article  CAS  Google Scholar 

  26. Baker BM, Murphy KP. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys J. 1996;71:2049–55.

    Article  CAS  Google Scholar 

  27. Fukada H, Takahashi K. Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride. Proteins. 1998;33:159–66.

    Article  CAS  Google Scholar 

  28. Haq I, O’Brien R, Lagunavicius A, Siksnys V, Ladbury JE. Specific DNA recognition by the type II restriction endonuclease MunI: the effect of pH. Biochemistry. 2001;40:14960–7.

    Article  CAS  Google Scholar 

  29. Goldberg RN, Kishore N, Lennen RM. Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem Ref Data. 2002;31:231–70.

    Article  CAS  Google Scholar 

  30. Hunt JP. Metal ions in aqueous solution. Amsterdam: W. A. Benjamin. Inc.; 1965.

    Google Scholar 

  31. Kiriukhin MY, Collins KD. Dynamic hydration numbers for biologically important ions. Biophys Chem. 2002;99:155–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Polish Ministry of Science and Higher Education under Grant DS/8230-4-0088-10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wyrzykowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyrzykowski, D., Czupryniak, J., Ossowski, T. et al. Thermodynamic interactions of the alkaline earth metal ions with citric acid. J Therm Anal Calorim 102, 149–154 (2010). https://doi.org/10.1007/s10973-010-0970-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0970-y

Keywords

Navigation