Journal of Thermal Analysis and Calorimetry

, Volume 102, Issue 1, pp 149–154 | Cite as

Thermodynamic interactions of the alkaline earth metal ions with citric acid

  • D. Wyrzykowski
  • J. Czupryniak
  • T. Ossowski
  • L. Chmurzyński


By using the isothermal titration calorimetry (ITC) technique, thermodynamic parameters have been determined for reactions of the Mg2+, Ca2+, Sr2+, and Ba2+ ions with the citrate anion. The measurements were run in the Cacodylate, Pipes and Mes buffer solutions of a pH of 6, at 298.15 K, as well as in the Tricine, Tapso, and Tris–HCl buffer solutions of a pH of 8. Further, based on the results of potentiometric titration, the conditional stability constants were determined for the citrate complexes at both pH values. The effect of the reaction environment and the metal ion identity on the interaction energy with the citrate ligand and the stability of the resulting compounds have been discussed.


Citrate complexes Thermodynamic parameters Isothermal titration calorimetry 



This research was supported by the Polish Ministry of Science and Higher Education under Grant DS/8230-4-0088-10.


  1. 1.
    Martin RB. Citrate binding of Al3+ and Fe3+. J Inorg Biochem. 1989;28:181–7.CrossRefGoogle Scholar
  2. 2.
    Beinert H, Kennedy MC. Engineering of protein bound iron-sulfur clusters. A tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes. Eur J Biochem. 1989;186:5–15.CrossRefGoogle Scholar
  3. 3.
    Lippard SJ. Principles of bioinorganic chemistry. Mill Valley, CA: University Science Books; 1994. p. 352.Google Scholar
  4. 4.
    Sheldrick B. Calcium hydrogen citrate trihydrate. Acta Crystallogr B. 1974;30:2056–7.CrossRefGoogle Scholar
  5. 5.
    Zacharias DE, Glusker JP. Structure of strontium citrate pentahydrate. Acta Crystallogr C. 1993;49:1732–9.CrossRefGoogle Scholar
  6. 6.
    Matzapetakis M, Karligiano N, Bino A, Dakanali M, Raptopoulou CP, Tangoulis V, Terzis A, Giapintzakis J, Salifoglou A. Manganese citrate chemistry: syntheses, spectroscopic studies, and structural characterizations of novel mononuclear, water-soluble manganese citrate complexes. Inorg Chem. 2000;39:4044–51.CrossRefGoogle Scholar
  7. 7.
    Zhou Z-H, Deng Y-F, Wan H-L. Structural diversities of cobalt(II) coordination polymers with citric acid. Cryst Growth Des. 2005;5:1109–17.CrossRefGoogle Scholar
  8. 8.
    Predoana L, Malic B, Zaharescu M. LaCoO3 formation from precursors obtained by water-based sol-gel method with citric acid. J Therm Anal Calorim. 2009;98:361–6.CrossRefGoogle Scholar
  9. 9.
    Waqas H, Quresh AH. Influence of pH on nanosized Mn–Zn ferrite synthesized by sol-gel auto combustion process. J Therm Anal Calorim. 2009;98:355–60.CrossRefGoogle Scholar
  10. 10.
    da Silva MFP, de Souza Carvalho FM, da Silva Martins T, de Abreu Fantini MC, Isolani PC. The role of citrate precursors on the morphology of lanthanide oxides obtained by thermal decomposition. J Therm Anal Calorim. 2010;99:385–90.CrossRefGoogle Scholar
  11. 11.
    Deng Y-F, Zhou Z-H, Cao Z-X, Tsai K-R. Speciation and transformation of Co(II)/Ni(II)–citrate–imidazole ternary system—synthesis, spectroscopic and structural studies. J Inorg Biochem. 2004;98:1110–6.CrossRefGoogle Scholar
  12. 12.
    Bates RG, Pinching GD. Resolution of the dissociation constants of citric acid at 0 to 50, and determination of certain related thermodynamic functions. J Am Chem Soc. 1949;71:1274–83.CrossRefGoogle Scholar
  13. 13.
    Levien BJ. A physicochemical study of aqueous citric acid solutions. J Phys Chem. 1955;59:640–4.CrossRefGoogle Scholar
  14. 14.
    Glusker JP, van der Helm D, Love WE, Dornberg ML, Minkin JA, Johnson CK, Patterson AL. X-ray crystal analysis of the substrates of aconitase. VI. The structures of sodium and lithium dihydrogen citrates. Acta Crystallogr. 1965;19:561–72.CrossRefGoogle Scholar
  15. 15.
    Holcomb M, Strumpel M, Butler WM, Nordman CE. A crystallographic study of the phase transition in rubidium dihydrogen citrate. Acta Crystallogr B. 1987;43:313–8.CrossRefGoogle Scholar
  16. 16.
    Gabe EJ, Glusker JP, Minkin JA, Patterson AL. X-ray crystal analysis of the substrates of aconitase. VII. The structure of lithium ammonium hydrogen citrate monohydrate. Acta Crystallogr. 1967;22:366–75.CrossRefGoogle Scholar
  17. 17.
    Zacharias DE, Glusker JP. Structure of a citrate double salt: potassium dihydrogen citrate-lithium potassium hydrogen citrate monohydrate. Acta Crystallogr C. 1993;49:1727–30.CrossRefGoogle Scholar
  18. 18.
    Martin RB. A complete ionization scheme for citric acid. J Phys Chem. 1961;65:2053–5.CrossRefGoogle Scholar
  19. 19.
    Strouse J. Carbon-13 NMR studies of ferrous citrates in acidic and alkaline solutions. Implications concerning the active site of aconitase. J Am Chem Soc. 1977;99:572–80.CrossRefGoogle Scholar
  20. 20.
    Strouse J, Layten SW, Strouse CE. Structural studies of transition metal complexes of triionized and tetraionized citrate. Models for the coordination of the citrate ion to transition metal ions in solution and at the active site of aconitase. J Am Chem Soc. 1977;99:562–72.CrossRefGoogle Scholar
  21. 21.
    Glusker JP. Citrate conformation and chelation: enzymatic implications. Acc Chem Res. 1980;13:345–52.CrossRefGoogle Scholar
  22. 22.
    Carrell HL, Glusker JP, Piercy EA, Stallings WC, Zacharias DE, Davis RL, Astbury C, Kennard CHL. Metal chelation versus internal hydrogen bonding of the.alpha.-hydroxy carboxylate group. J Am Chem Soc. 1987;109:8067–71.CrossRefGoogle Scholar
  23. 23.
    Brandariz I, Barriada J, Vilarino T, Sastre de Vicente M. Comparison of several calibration procedures for glass electrodes in proton concentration. Monatsh Chem. 2004;135:1475–88.CrossRefGoogle Scholar
  24. 24.
    Kostrowicki J, Liwo A. A general method for the determination of the stoichiometry of unknown species in multicomponent systems from physicochemical measurements. Comput Chem. 1987;11:195–210.CrossRefGoogle Scholar
  25. 25.
    Al-Khaldi MH, Nasr-El-Din HA, Mehta S, Al-Aamri AD. Reaction of citric acid with calcite. Chem Eng Sci. 2007;62:5880–96.CrossRefGoogle Scholar
  26. 26.
    Baker BM, Murphy KP. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys J. 1996;71:2049–55.CrossRefGoogle Scholar
  27. 27.
    Fukada H, Takahashi K. Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride. Proteins. 1998;33:159–66.CrossRefGoogle Scholar
  28. 28.
    Haq I, O’Brien R, Lagunavicius A, Siksnys V, Ladbury JE. Specific DNA recognition by the type II restriction endonuclease MunI: the effect of pH. Biochemistry. 2001;40:14960–7.CrossRefGoogle Scholar
  29. 29.
    Goldberg RN, Kishore N, Lennen RM. Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem Ref Data. 2002;31:231–70.CrossRefGoogle Scholar
  30. 30.
    Hunt JP. Metal ions in aqueous solution. Amsterdam: W. A. Benjamin. Inc.; 1965.Google Scholar
  31. 31.
    Kiriukhin MY, Collins KD. Dynamic hydration numbers for biologically important ions. Biophys Chem. 2002;99:155–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • D. Wyrzykowski
    • 1
  • J. Czupryniak
    • 1
  • T. Ossowski
    • 1
  • L. Chmurzyński
    • 1
  1. 1.Faculty of ChemistryUniversity of GdańskGdańskPoland

Personalised recommendations