Journal of Thermal Analysis and Calorimetry

, Volume 103, Issue 2, pp 701–710 | Cite as

Crystallization behavior of isotactic polypropylene/magnesium salt whisker composites modified by compatibilizer PP-g-MAH

  • Zhiyong Wei
  • Wanxi Zhang
  • Guangyi Chen
  • Jicai Liang
  • Ying Chang
  • Lian Liu
  • Pei Wang
  • Juncai Sun


Crystallization behavior of isotactic polypropylene (iPP)/magnesium salt whisker (MSW) composites modified by compatibilizer PP-g-MAH was studied under both isothermal and nonisothermal conditions. Analysis of the isothermal crystallization showed that the Avrami model successfully described the crystallization process. On the basis of Lauritzen–Hoffman theory, a regime transition was observed at about 139 °C for the iPP/MSW composite, and a decrease in the fold surface free energy was calculated with the addition of MSW and PP-g-MAH. The addition of MSW filler and PP-g-MAH compatibilizer distinctly improved the crystallization temperature and accelerated the total crystallization rate of iPP. It was observed that MSW induced the formation of β-iPP but PP-g-MAH suppressed the formation of β-iPP.


Crystallization Isotactic polypropylene Magnesium salt whisker Melting behavior 



The research was financed by the National High Technology Research and Development Program of China (863 Program No. 2009AA03Z319), and the National Natural Science Foundation of China (No. 50901011), and the Fundamental Research Funds for the Central Universities.


  1. 1.
    Tjong SC, Meng YZ. Performance of potassium titanate whisker reinforced polyamide-6 composites. Polymer. 1998;39:5461–6.CrossRefGoogle Scholar
  2. 2.
    Tjong SC, Meng YZ. Properties and morphology of polyamide 6 hybrid composites containing potassium titanate whisker and liquid crystalline copolyester. Polymer. 1999;40:1109–17.CrossRefGoogle Scholar
  3. 3.
    Countney TH. Mechanical behavior of materials. New York: McGraw Hill; 1990.Google Scholar
  4. 4.
    Ma PH, Wei ZQ, Xu G, Bao JQ, Wen XM. Dehydration and desulfuration of magnesium oxysulfate whisker. J Mater Sci Lett. 2000;19:257–8.CrossRefGoogle Scholar
  5. 5.
    Xiang L, Liu F, Li J, Jin Y. Hydrothermal formation and characterization of magnesium oxysulfate whiskers. Mater Chem Phys. 2004;87:424–9.CrossRefGoogle Scholar
  6. 6.
    Lu HD, Hu Y, Yang Z, Wang ZZ, Chen ZY, Fan WC. Study of the fire performance of magnesium hydroxide sulfate hydrate whisker flame retardant polyethylene. Macromol Mater Eng. 2004;289:984–9.CrossRefGoogle Scholar
  7. 7.
    Lu HD, Hu Y, Xiao JF, Wang ZZ. Magnesium hydroxide sulfate hydrate whisker flame retardant polyethylene/montmorillonite nanocomposites. J Mater Sci. 2006;41:363–7.CrossRefGoogle Scholar
  8. 8.
    Liu B, Zhang Y, Wan CY, Zhang YX, Li RX, Liu GY. Thermal stability, flame retardancy and rheological behavior of ABS filled with magnesium hydroxide sulfate hydrate whisker. Polym Bull. 2007;58:747–55.CrossRefGoogle Scholar
  9. 9.
    Ouyang YX, Sui GX, Yang R, Zhuang GS. Preparation and mechanical properties of magnesium salt whisker/ABS composites. Mater Manuf Process. 2006;21:191–7.CrossRefGoogle Scholar
  10. 10.
    Fang SL, Hu Y, Song L, Zhan J, He QL. Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. J Mater Sci. 2008;43:1057–62.CrossRefGoogle Scholar
  11. 11.
    Galeski A. Strength and toughness of crystalline polymer systems. Prog Polym Sci. 2003;28:1643–99.CrossRefGoogle Scholar
  12. 12.
    Chen J-H, Yao B-X, Su W-B, Uang Y-B. Isothermal crystallization behavior of isotactic polypropylene blended with small loading of polyhedral oligomeric silsesquioxane. Polymer. 2007;48:1756–69.CrossRefGoogle Scholar
  13. 13.
    Zhou Z, Cui L, Zhang Y, Zhang Y, Yin N. Isothermal crystallization kinetics of polypropylene/POSS composites. J Polym Sci Part B Polym Phys. 2008;46:1762–72.CrossRefGoogle Scholar
  14. 14.
    Ardanuy M, Velasco JI, Realinho V, Arencón D, Martínez AB. Non-isothermal crystallization kinetics and activity of filler in polypropylene/Mg-Al layered double hydroxide nanocomposites. Thermochim Acta. 2008;479:45–52.CrossRefGoogle Scholar
  15. 15.
    Wang K, Wu J, Zeng H-M. Crystallization and melting behaviour of polypropylene/barium sulfate composites. Polym Int. 2004;53:838–43.CrossRefGoogle Scholar
  16. 16.
    Ning N, Yin Q, Luo F, Zhang Q, Du R, Fu Q. Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer. 2007;48:7374–84.CrossRefGoogle Scholar
  17. 17.
    Naffakh M, Martin Z, Marco C, Gomez MA, Jimenez I. Isothermal crystallization kinetics of isotactic polypropylene with inorganic fullerene-like WS2 nanoparticles. Thermochim Acta. 2008;472:11–6.CrossRefGoogle Scholar
  18. 18.
    Menyhárd A, Varga J. The effect of compatibilizers on the crystallisation, melting and polymorphic composition of β-nucleated isotactic polypropylene and polyamide 6 blends. Eur Polym J. 2006;42:3257–68.CrossRefGoogle Scholar
  19. 19.
    Shen H, Wang Y, Mai K. Non-isothermal crystallization behavior of PP/Mg(OH)2 composites modified by different compatibilizers. Thermochim Acta. 2007;457:27–34.CrossRefGoogle Scholar
  20. 20.
    Ning N, Luo F, Wang K, Du R, Zhang Q, Chen F, Fu Q. Interfacial enhancement by shish-calabash crystal structure in polypropylene/inorganic whisker composites. Polymer. 2009;50:3851–6.CrossRefGoogle Scholar
  21. 21.
    Feng D, Caulfield DF, Sanadi AF. Effect of compatibilizer on the structure-property relationships of kenaf-fiber/polypropylene composites. Polym Compos. 2001;22:506–17.CrossRefGoogle Scholar
  22. 22.
    Lonkar SP, Singh RP. Isothermal crystallization and melting behavior of polypropylene/layered double hydroxide nanocomposites. Thermochim Acta. 2009;491:63–70.CrossRefGoogle Scholar
  23. 23.
    Xu W, Liang G, Zhai H, Tang S, Hang G, Pan W-P. Preparation and crystallization behaviour of PP/PP-g-MAH/Org-MMT nanocomposite. Eur Polym J. 2003;39:1467–74.CrossRefGoogle Scholar
  24. 24.
    Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites. Thermochim Acta. 2005;427:117–28.CrossRefGoogle Scholar
  25. 25.
    Du M, Guo B, Wan J, Zou Q, Jia D. Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene. J Polym Res. 2010;17:109–18.CrossRefGoogle Scholar
  26. 26.
    Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.CrossRefGoogle Scholar
  27. 27.
    Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.CrossRefGoogle Scholar
  28. 28.
    Avrami M. Kinetics of phase change. III. Granulation, phase change, and microstructure. J Chem Phys. 1941;9:177–84.CrossRefGoogle Scholar
  29. 29.
    Lauritzen JL, Hoffman JD. Extension of theory of growth of chain-folded polymer crystals to large under coolings. J Appl Phys. 1973;44:4340–52.CrossRefGoogle Scholar
  30. 30.
    Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997;38:3151–212.CrossRefGoogle Scholar
  31. 31.
    Huo H, Meng YE, Li HF, Jiang SC, An LJ. Influence of shear on polypropylene crystallization kinetics. Eur Phys J E. 2004;15:167–75.CrossRefGoogle Scholar
  32. 32.
    Chan TW, Isayev AI. Quiescent polymer crystallization: modeling and measurements. Polym Eng Sci. 1994;34:461–71.CrossRefGoogle Scholar
  33. 33.
    Sorrentino L, Iannace S, Maio ED, Acierno D. Isothermal crystallization kinetics of chain-extended PET. J Polym Sci Part B Polym Phys. 2005;43:1966–72.CrossRefGoogle Scholar
  34. 34.
    Papageorgiou GZ, Achilias DS, Bikiaris DN. Macromol. Crystallization kinetics of biodegradable poly(butylene succinate) under isothermal and non-isothermal conditions. Macromol Chem Phys. 2007;208:1250–64.CrossRefGoogle Scholar
  35. 35.
    Varga J. Crystallization, melting and supermolecular structure of isotactic polypropylene. In: Karger-Kocsis J, editor. Polypropylene: structure, blends and composites. Vol. I. Structure and morphology. London: Chapman and Hall; 1995. p. 56–115.Google Scholar
  36. 36.
    Clark EJ, Hoffman JD. Regime-III crystallization in polypropylene. Macromolecules. 1984;17:878–85.CrossRefGoogle Scholar
  37. 37.
    Zhang Y-F, Xin Z. Isothermal and nonisothermal crystallization kinetics of isotactic polypropylene nucleated with substituted aromatic heterocyclic phosphate salts. J Appl Polym Sci. 2006;101:3307–16.CrossRefGoogle Scholar
  38. 38.
    Nitta KH, Asuka KZ, Liu BP, Terano M. The effect of the addition of silica particles on linear spherulite growth rate of isotactic polypropylene and its explanation by lamellar cluster model. Polymer. 2006;47:6457–63.CrossRefGoogle Scholar
  39. 39.
    Wang K, Wu JS, Zeng HM. Radial growth rate of spherulites in polypropylene barium sulfate composites. Eur Polym J. 2003;39:1647–52.CrossRefGoogle Scholar
  40. 40.
    Menyhárd A, Faludi G, Varga J. β-Crystallisation tendency and structure of polypropylene grafted by maleic anhydride and its blends with isotactic polypropylene. J Therm Anal Calorim. 2008;93:937–45.CrossRefGoogle Scholar
  41. 41.
    Wang Y, Shen H, Li G, Mai K. Crystallization and melting behavior of PP/nano-CaCO3 composites with different interfacial interaction. J Therm Anal Calorim. 2010;99:399–407.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Zhiyong Wei
    • 1
  • Wanxi Zhang
    • 1
  • Guangyi Chen
    • 1
  • Jicai Liang
    • 1
  • Ying Chang
    • 1
  • Lian Liu
    • 2
  • Pei Wang
    • 2
  • Juncai Sun
    • 2
  1. 1.School of Automotive EngineeringDalian University of TechnologyDalianChina
  2. 2.School of Transportation and Logistics EngineeringDalian Maritime UniversityDalianChina

Personalised recommendations