Journal of Thermal Analysis and Calorimetry

, Volume 103, Issue 1, pp 339–345 | Cite as

DSC and morphological studies on the crystallization behavior of β-nucleated isotactic polypropylene composites filled with Kevlar fibers

  • Yewen Cao
  • Jiachun Feng
  • Peiyi Wu


The crystallization behavior of β-nucleated isotactic polypropylene (PP) composites filled with Kevlar fibers (KFs), as well as that of non-nucleated PP/KF composites for comparison, was investigated using differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The morphological observations revealed that the KF addition could induce thick α-transcrystalline layer around their surfaces in PP/KF composites, while no obvious transcrystalline layer could be detected in β-nucleated PP/KF composites. Detailed DSC investigations suggested that for the PP/KF composites, the dominant modification was α-form, and the crystallization process of matrix was promoted by KF addition, as illustrated by faster isothermal crystallization rate, shorter induction time, and higher crystallization temperature. However, for β-nucleated PP/KF composites, the main modification was β-form, and their crystallization characteristics were independent of KF addition, indicating that the α-nucleating effect of KFs was absent in this system. The DSC results were confirmed by further rheological and wide angle X-ray diffraction (WAXD) studies. The mechanism of the formation of transcrystalline layer was also discussed.


DSC POM β-Nucleated isotactic polypropylene Kevlar fiber Transcrystalline layer 



We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 20874017, 50673021), the Shanghai-Unilever Research and Development Fund (09520715500), and the National Hi-Tech Research & Development Program (2007AA03Z450).


  1. 1.
    Liang S, Yang H, Wang K, Zhang Q, Du R, Fu Q. Unique crystal morphology and tensile properties of injection-molded bar of LLDPE by adding HDPE with different molecular weights. Acta Mater. 2008;56:50–9.CrossRefGoogle Scholar
  2. 2.
    Chen YH, Zhong GJ, Wang Y, Li ZM, Li LB. Unusual tuning of mechanical properties of isotactic polypropylene using counteraction of shear flow and beta-nucleating agent on beta-form nucleation. Macromolecules. 2009;42:4343–8.CrossRefGoogle Scholar
  3. 3.
    Zhang MQ, Xu JR, Zhang ZY, Zeng HM, Xiong XD. Effect of transcrystallinity on tensile behaviour of discontinuous carbon fibre reinforced semicrystalline thermoplastic composites. Polymer. 1996;37:5151–8.CrossRefGoogle Scholar
  4. 4.
    Muratoglu OK, Argon AS, Cohen RE, Weinberg M. Toughening mechanism of rubber-modified polyamides. Polymer. 1995;36:921–30.CrossRefGoogle Scholar
  5. 5.
    Grein C. Toughness of neat, rubber modified and filled beta-nucleated polypropylene: from fundamentals to applications. Adv Polym Sci. 2005;188:43–104.CrossRefGoogle Scholar
  6. 6.
    Na B, Guo M, Yang JH, Tan H, Zhang Q, Fu Q. Crystal morphology and transcrystallization mechanism of isotactic polypropylene induced by fibres: interface nucleation versus bulk nucleation. Polym Int. 2006;55:441–8.CrossRefGoogle Scholar
  7. 7.
    Varga J, Karger-Kocsis J. Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci Part B Polym Phys. 1996;34:657–70.CrossRefGoogle Scholar
  8. 8.
    Pompe G, Mader E. Experimental detection of a transcrystalline interphase in glass-fibre/polypropylene composites. Compos Sci Technol. 2000;60:2159–67.CrossRefGoogle Scholar
  9. 9.
    Dasari A, Yu ZZ, Mai YW. Transcrystalline regions in the vicinity of nanofillers in polyamide-6. Macromolecules. 2007;40:123–30.CrossRefGoogle Scholar
  10. 10.
    Assouline E, Pohl S, Fulchiron R, Gerard JF, Lustiger A, Wagner HD, Marom G. The kinetics of alpha and beta transcrystallization in fibre-reinforced polypropylene. Polymer. 2000;41:7843–54.CrossRefGoogle Scholar
  11. 11.
    Klein N, Marom G, Wachtel E. Microstructure of nylon 66 transcrystalline layers in carbon and aramid fibre reinforced composites. Polymer. 1996;37:5493–8.CrossRefGoogle Scholar
  12. 12.
    Feldman A, Gonzalez MF, Marom G. Transcrystallinity in surface modified aramid fiber reinforced nylon 66 composites. Macromol Mater Eng. 2003;288:861–6.CrossRefGoogle Scholar
  13. 13.
    Cho KW, Kim DW, Yoon S. Effect of substrate surface energy on transcrystalline growth and its effect on interfacial adhesion of semicrystalline polymers. Macromolecules. 2003;36:7652–60.CrossRefGoogle Scholar
  14. 14.
    Varga J, Karger-Kocsis J. The occurrence of transcrystallization or row-nucleated cylindritic crystallization as a result of shearing in a glass-fiber-reinforced polypropylene. Compos Sci Technol. 1993;48:191–8.CrossRefGoogle Scholar
  15. 15.
    Houshyar S, Shanks RA. Morphology, thermal and mechanical properties of poly(propylene) fibre-matrix composites. Macromol Mater Eng. 2003;288:599–606.CrossRefGoogle Scholar
  16. 16.
    Lotz B, Wittmann JC, Lovinger AJ. Structure and morphology of poly(propylenes): a molecular analysis. Polymer. 1996;37:4979–92.CrossRefGoogle Scholar
  17. 17.
    Bruckner S, Meille SV, Petraccone V, Pirozzi B. Polymorphism in isotactic polypropylene. Prog Polym Sci. 1991;16:361–404.CrossRefGoogle Scholar
  18. 18.
    Varga J. Crystallization, melting and supermolecular structure of isotactic polypropylene. In: Karger-Kocsis J, editor. Polypropylene: structure, blends and composites, vol. 1. London: Chamman & Hall; 1995. p. 56–115.Google Scholar
  19. 19.
    Krache R, Benavente R, Lopez-Majada JM, Perena JM, Cerrada ML, Perez E. Competition between alpha, beta, and gamma polymorphs in beta-nucleated metallocenic isotactic polypropylene. Macromolecules. 2007;40:6871–8.CrossRefGoogle Scholar
  20. 20.
    Menyhard A, Faludi G, Varga J. Beta-crystallisation tendency and structure of polypropylene grafted by maleic anhydride and its blends with isotactic polypropylene. J Therm Anal Calorim. 2008;93:937–45.CrossRefGoogle Scholar
  21. 21.
    Varga J. Beta-modification of isotactic polypropylene: preparation, structure, processing, properties, application. J Macromol Sci Phys. 2002;41:1121–71.CrossRefGoogle Scholar
  22. 22.
    Shi GY, Zhang XD, Qiu ZX. Crystallization kinetics of beta-phase polypropylene. Makromol Chem. 1992;193:583–91.CrossRefGoogle Scholar
  23. 23.
    Varga J, Mudra I, Ehrenstein GW. Highly active thermally stable beta-nucleating agent for isotactic polypropylene. J Appl Polym Sci. 1999;74:2357–68.CrossRefGoogle Scholar
  24. 24.
    Mcgenity PM, Hooper JJ, Paynter CD, Riley AM, Nutbeem C, Elton NJ, Adams JM. Nucleation and crystallization of polypropylene by mineral fillers - relationship to impact strength. Polymer. 1992;33:5215–24.CrossRefGoogle Scholar
  25. 25.
    Xiao WC, Wu PY, Feng JC, Yao RY. Influence of a novel beta-nucleating agent on the structure, morphology, and nonisothermal crystallization behavior of isotactic polypropylene. J Appl Polym Sci. 2009;111:1076–85.CrossRefGoogle Scholar
  26. 26.
    Cao YW, Feng JC, Wu PY. Simultaneously improving the toughness, flexural modulus and thermal performance of isotactic polypropylene by alpha-beta crystalline transition and inorganic whisker reinforcement. Polym Eng Sci. 2010;50:222–31.CrossRefGoogle Scholar
  27. 27.
    Varga J. Melting memory effect of the beta-modification of polypropylene. J Therm Anal. 1986;31:165–72.CrossRefGoogle Scholar
  28. 28.
    Turi EA. Thermal characterization of polymeric materials. 2nd ed. San Diego: Academic Press; 1997.Google Scholar
  29. 29.
    Varga J. Beta-modification of polypropylene and its two-component systems. J Therm Anal. 1989;35:1891–912.CrossRefGoogle Scholar
  30. 30.
    Khanna YP. Rheological mechanism and overview of nucleated crystallization kinetics. Macromolecules. 1993;26:3639–43.CrossRefGoogle Scholar
  31. 31.
    Ning NY, Yin QJ, Luo F, Zhang Q, Du R, Fu Q. Crystallization behavior and mechanical properties of polypropylene/halloy site composites. Polymer. 2007;48:7374–84.CrossRefGoogle Scholar
  32. 32.
    Acierno S, Pasquino R, Grizzuti N. Rheological techniques for the determination of the crystallization kinetics of a polypropylene-EPR copolymer. J Therm Anal Calorim. 2009;98:639–44.CrossRefGoogle Scholar
  33. 33.
    Iervolino R, Somma E, Nobile MR, Chen XM, Hsiao BS. The role of multi-walled carbon nanotubes in shear enhanced crystallization of isotactic poly(1-butene). J Therm Anal Calorim. 2009;98:611–22.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science and Laboratory of Advanced MaterialsFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations