Journal of Thermal Analysis and Calorimetry

, Volume 102, Issue 2, pp 647–652 | Cite as

Viscoelastic properties of κ-carrageenan in saline solution

  • Nalinda Almeida
  • Stanley Hirschi
  • Anja Mueller
  • Leela Rakesh


Viscoelastic properties of κ-carrageenan in saline solution at various concentrations and pH were investigated by dynamic rheological techniques, viscosity, elasticity measurements, and IR spectrometry. The viscosity and elasticity at low concentrations of κ-carrageenan do not depend on pH, confirming that κ-carrageenan is in a disordered conformation. At 0.7% κ-carrageenan, the disordered confirmation transforms into an ordered helical confirmation with the possibility of weak-type gel formation. The transformation is also confirmed by dynamic measurements of loss and storage moduli. Furthermore, at this concentration, the viscosity and elasticity are highly dependent on pH. At higher concentrations of NaCl (0.5 M) at some pHs, we observed that storage moduli is greater than loss moduli for the entire frequency region. Hence, there is a possibility of structure transformation from weak-type gel to a somewhat intermediate gel. The lowest viscosity and elasticity were obtained at extreme pH, confirming that there are structural changes occurring at these pHs due to hydrolysis. This is confirmed by IR data.


Elasticity Storage modulus Loss modulus Gel point IR Relaxation time Viscoelasticity Viscosity 



Authors are thankful for the financial support provided by the Science of Advanced Materials of College of Science and Technology and School of Graduate Studies at Central Michigan University.


  1. 1.
    Steventon AJ, Donald AM, Glandell LF. Biochemistry of milk products. Royal Soc Chem. 1994;133–42.Google Scholar
  2. 2.
    Alizadehfard MR, Wiley DE. Viscosity of whey protein solutions. Iran J Polym Sci Technol. 1995;4:126–33.Google Scholar
  3. 3.
    Ipsen R. Mixed gels made from protein and kappa-carrageenan. Carbohydr Polym. 1995;28:337–9.CrossRefGoogle Scholar
  4. 4.
    Tombs MP, Harding SE. An introduction to polysaccharide biotechnology. London: Taylor & Francis Ltd; 1998.Google Scholar
  5. 5.
    Velde F, Ruiter GA. Carrageenan. In: Steinbuchel A, Rhee SK, editors. Polysaccharides and polyamides in the food industry. Weinheim: Wiley-VCH Verlag GmbH & Co. 2005. pp. 85–114.Google Scholar
  6. 6.
    Watase M, Nishinari K. Effect of alkali metal ions on the rheological properties of κ-carrageenan and agarose gels. J Texture Stud. 1981;12:427–35.CrossRefGoogle Scholar
  7. 7.
    Watase M, Nishinari K. The effect of monovalent cations and anions on the rheological properties of kappa-carrageenan gels. J Texture Stud. 1988;19:259–63.CrossRefGoogle Scholar
  8. 8.
    Rinaudo M. Gelation of poly-saccharides. J Intel Mat Syst Str. 1993;4:210–5.CrossRefGoogle Scholar
  9. 9.
    Rochas C, Rinaudo M. Mechanism of gel formation in κ-carrageenan. Biopolymers. 1984;23:735–45.CrossRefGoogle Scholar
  10. 10.
    Chronakis IS, Piculell L, Borgstrom J. Rheology of kappa-carrageenan in mixtures of sodium and cesium iodide: two types of gels. Carbohydr Polym. 1996;31:215–25.CrossRefGoogle Scholar
  11. 11.
    Yugushi Y, Urakawa H, Kajiwara K. Structural characteristics of carrageenan gels: various types of counter ions. Food Hydrocol. 2003;17:481–5.CrossRefGoogle Scholar
  12. 12.
    Mothe CG, Correia DZ, de Franca FP, Riga AT. Thermal and rheological study of polysaccharides for enhanced oil recovery. J Therm Anal Calorim. 2006;85(1):31–6.CrossRefGoogle Scholar
  13. 13.
    Windhab EJ. New developments in crystallization processing. J Therm Anal Calorim. 1999;57(1):171–80.CrossRefGoogle Scholar
  14. 14.
    Zhang W, Piculell L, Nilsson S. Effect of specific anion binding on the helix-coil transition of lower charged carrageenans. NMR data and conformational equilibria analyzed within the Poisson–Boltzman cell model. Macromolecules. 1992;25:6165–72.CrossRefGoogle Scholar
  15. 15.
    Ould Eleya MM, Turgeon SL. The effect of pH on the rheology of β-lactoglobulin/κ-carrageenan mixed gels. Food Hydrocol. 2000;14(3):245–51.CrossRefGoogle Scholar
  16. 16.
    Pelletier E, Viebke C, Meadows J, Williams P. Solution rheology of κ-Carrageenan in the ordered and disordered conformations. Biomacromolecules. 2001;2:946–51.CrossRefGoogle Scholar
  17. 17.
    Lai VMF, Wong PAL, Lii CY. Effect of cation properties on sol-gel transition and gel properties of κ-carrageenan. J Food Sci. 2000;65(8):1332–47.CrossRefGoogle Scholar
  18. 18.
    Moritaka H, Takahashi M, Kubota K. Effect of cooling rate and sodium on poly-saccharide gelation. Food Sci Technol Res. 2007;13(4):345–50.CrossRefGoogle Scholar
  19. 19.
    Fernandes PB, Goncalves MP, Doublier JL. Influence of locust bean gum on the rheological properties of kappa-carrageenan system in the vicinity of the gel point. Carbohydr Polym. 1993;22:99–106.CrossRefGoogle Scholar
  20. 20.
    Rochas C, Rinaudo M, Landry S. Role of the molecular on the mechanical properties of kappa carrageenan gels. Carbohydr Polym. 1990;12:255–66.CrossRefGoogle Scholar
  21. 21.
    Mleko S, Li-Chan ECY, Pikus S. Interaction of κ-carrageenan with whey proteins in gels formed at different pH. Food Res Int. 1997;30(6):427–33.Google Scholar
  22. 22.
    Singh S, Jacobson SP. Kinetics of acid hydrolysis of κ-carrageenan as determined by molecular weight and, gel breaking strength and viscosity measurement. Carbohydr Polym. 1994;23:89–103.CrossRefGoogle Scholar
  23. 23.
    Almdal K, Dyre J, Hvidt S, Kramer O. Towards a phenomenological definition of the term ‘gel’. Polym Gels Netw. 1993;1:5–17.CrossRefGoogle Scholar
  24. 24.
    Ikeda S, Nishinari K. “Weak Gel”-type rheological properties of aqueous dispersions of non-aggregated κ-carrageenan helices. J Agric Food Chem. 2001;49:4436–41.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Nalinda Almeida
    • 1
  • Stanley Hirschi
    • 1
  • Anja Mueller
    • 2
  • Leela Rakesh
    • 3
  1. 1.Department of PhysicsCentral Michigan UniversityMt. PleasantUSA
  2. 2.Department of ChemistryCentral Michigan UniversityMt. PleasantUSA
  3. 3.Department of Mathematics and Center for Polymer Fluid Dynamics Science of Advanced MaterialsCentral Michigan UniversityMt. PleasantUSA

Personalised recommendations