Journal of Thermal Analysis and Calorimetry

, Volume 101, Issue 2, pp 577–583 | Cite as

Stability of supramolecular compounds under heating

Thermodynamic and kinetic aspects
  • V. Logvinenko


The decomposition of series of supramolecular compounds, namely inclusion compounds, was studied by means of different thermoanalytical methods, i.e., traditional thermogravimetry, quasi-equilibrium thermogravimetry, and thermomechanical analysis. The series of compounds included the intercalates on the base of fluorinated graphite C2F, the clathrates on the base of carbamide and on the base of coordination compounds and microporous inclusion compounds on the base of coordination compounds. Kinetic parameters of decomposition processes were estimated within the approaches of the non-isothermal kinetics (“model-free” kinetics, linear and non-linear regression methods for the topochemical equation detection). The kinetic stability of the inclusion compounds under heating, the flexibility of the matrix structure, and the thermodynamic stability of the intermediate phases are discussed.


Inclusion compounds Kinetic stability Non-isothermal kinetics Quasi-isobaric quasi-isothermal thermogravimetry Supramolecular compounds Thermodynamic stability 



Author is grateful to Netzsch Geraetebau GmbH for the possibility to work with computer program “NETZSCH Thermokinetics 2” and RFBR for the financial support (Grants 07-03-00436 and 07-03-91208).


  1. 1.
    Atwood JL, Steed JW, editors. Encyclopedia of supramolecular chemistry. Boca Raton: CRC Press Science; 2004.Google Scholar
  2. 2.
    Paulik J, Paulik F. Simultaneous thermoanalytical examinations by means of the derivatography. New York: Elsevier Scientific Publishing Company; 1981.Google Scholar
  3. 3.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  4. 4.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci C. 1963;6:183–95.Google Scholar
  5. 5.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  6. 6.
    Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203(C):159–65.CrossRefGoogle Scholar
  7. 7.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:478–523.Google Scholar
  8. 8.
    Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa–Flynn–Wall analysis. Thermochim Acta. 1966;203(C):167–75.Google Scholar
  9. 9.
    Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermo- analytical data-advantages and limitations. Thermochim Acta. 2002;391:119–27.CrossRefGoogle Scholar
  10. 10.
    Vyazovkin S. Model-free kinetics: staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.CrossRefGoogle Scholar
  11. 11.
    Netzsch Thermokinetics 2. Version 2004.05;
  12. 12.
    Dyadin YA, Soldatov DV, Logvinenko VA, Lipkowski J. Contact stabilization of host complex molecules during clathrate formation: the pyridine-zinc nitrate and the pyridine-cadmium nitrate systems. J Coord Chem. 1996;37:63–75.CrossRefGoogle Scholar
  13. 13.
    Pinakov DV, Logvinenko VA. The relationship between properties of fluorinated graphite intercalates and matrix composition. Intercalate with acetonitrile. J Therm Anal Calorim. 2006;86:173–8.CrossRefGoogle Scholar
  14. 14.
    Yudanov NF, Chernyavski LI. The model of the structure for the intercalates on the base of the fluorinated graphite. Zhurn Struct Khimii. 1987; 28:86–95 (in Russian).Google Scholar
  15. 15.
    Logvinenko VA. Thermoanalytical approach to the study of the kinetic and thermodynamic stability of coordination compounds and clathrates. J Therm Anal. 1990;36:1973–80.CrossRefGoogle Scholar
  16. 16.
    Logvinenko V. Stability and reactivity of coordination and inclusion compounds in the reversible processes of thermal dissociation. Thermochim Acta. 1999;340–1:293–9.CrossRefGoogle Scholar
  17. 17.
    Logvinenko V. Solid state coordination chemistry. The quantitative thermoanalytical study of thermal dissociation reactions. J Therm Anal Calorim. 2000;60:9–15.CrossRefGoogle Scholar
  18. 18.
    Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.CrossRefGoogle Scholar
  19. 19.
    Sestak J. Thermophysical properties of solids. Their measurements and theoretical thermal analysis. Prague: Academia Prague; 1984.Google Scholar
  20. 20.
    Sestak J. Heat, thermal analysis and society. Pardubice: Nucleus NK; 2004.Google Scholar
  21. 21.
    Simon P. The single-step approximation: attributes, strong and weak sides. J Therm Anal Calorim. 2007;88:709–15.CrossRefGoogle Scholar
  22. 22.
    Simon P. Single-step kinetics approximation employing non-arrhenius temperature functions. J Therm Anal Calorim. 2005;79:703–8.CrossRefGoogle Scholar
  23. 23.
    Logvinenko V, Fedorov V, Mironov Y, Drebushchak V. Kinetic and thermodynamic stability of cluster compounds under heating. J Therm Anal. 2007;88:687–92.CrossRefGoogle Scholar
  24. 24.
    Logvinenko V, Drebushchak V, Pinakov D, Chekhova G. Thermodynamic and kinetic stability of inclusion compounds under heating. J Therm Anal. 2007;90:23–30.CrossRefGoogle Scholar
  25. 25.
    Nassimbeny LR. Physicochemical aspects of host-guest compounds. Acc Chem Res. 2003;36:631–7.CrossRefGoogle Scholar
  26. 26.
    Logvinenko VA, Gegola OV, Chekhova GN, Dyadin YA. Kinetics of the thermal decomposition of clathrates of carbamide with n-alkanes. Conference on kinetics and mechanism of chemical reactions in solids. Abstracts, vol 1. Novosibirsk; 1977. p. 150–3 (in Russian).Google Scholar
  27. 27.
    Hauptmann S, Graefe J, Remane H. Lehrbuch der organischen chemie. Leipzig: VEB Deutscher Verlag fur Grundstoffindustrie; 1976.Google Scholar
  28. 28.
    Logvinenko VA, Soldatov DV. Processes of thermal dissociation of clathrates on the base of coordination compounds. J Therm Anal Calorim. 1999;56:485–92.CrossRefGoogle Scholar
  29. 29.
    Soldatov DV, Logvinenko VA, Dyadin YA. The clathrates formation and phase equilibrium in the system Py–Zn(NO3)2. Zhurn Neorg Khimii. 1995;40:324–8 (in Russian).Google Scholar
  30. 30.
    Soldatov DV, Ukraintseva EA, Logvinenko VA, Dyadin YA, Grachev EV, Manakov AY. Thermodynamic dissociation constants for [MPy4(NO3)2]·2Py clathrates (M=Mn, Co, Ni, Cu). Supramol Chem. 2000;12:237–46.CrossRefGoogle Scholar
  31. 31.
    Logvinenko V, Dybtsev D, Fedin V, Drebushchak V, Yutkin M. The stability of inclusion compounds under heating. Part I. Inclusion compounds of microporous manganese formate with included dioxane and tetrahydrofuran. J Therm Anal Calorim. 2007;90:463–7.CrossRefGoogle Scholar
  32. 32.
    Margit B, Bombicz P, Madarász J. Thermal stability and structure of a new co-crystal of theophylline formed with phthalic acid TG/DTA-EGA-MS and TG-EGA-FTIR study. J Therm Anal Calorim. 2009;95:895–901.CrossRefGoogle Scholar
  33. 33.
    Terekhova IV, De Lisi R, Lazzara G, Milioto S, Muratore N. Volume and heat capacity studies to evidence interactions between cyclodextrins and nicotinic acid in water. J Therm Anal Calorim. 2008;92:285–90.CrossRefGoogle Scholar
  34. 34.
    Logvinenko V, Dybtsev D, Fedin V, Drebushchak V, Yutkin M. The stability of inclusion compounds under heating. Part 2. Inclusion compounds of layered zinc camphorate, linked by linear N-donor ligands. J Therm Anal Calorim. 2010;100: 183–9. doi:  10.1007/s1097300904442.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Nikolaev Institute of Inorganic ChemistrySiberian Branch of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations