Journal of Thermal Analysis and Calorimetry

, Volume 103, Issue 1, pp 283–291 | Cite as

Comparative study on thermal degradation of some new diazoaminoderivatives under air and nitrogen atmospheres

  • Anca Mihaela Mocanu
  • Lucia Odochian
  • N. Apostolescu
  • C. Moldoveanu


The article is devoted to a comparative study on the thermal degradation of some new diazoaminoderivatives under both air and nitrogen atmosphere by TG-FTIR analysis. The TG–DTG–DTA curves show the thermal degradation in air to present two temperature domains: an endothermic one identical to the case of the degradation under nitrogen and an exothermic one which is not to be found under nitrogen atmosphere. The identification of the gaseous species released by degradation in air within the endothermic domain made evident the presence of the same components of the degradation in nitrogen atmosphere. In the exothermic domain of the sample degradation in air, the CO2, H2O, SO2 species result by the burning of the molecular residues of the first domain. The obtained results afforded a degradation mechanism to be advanced that coincide for the endothermic domain with that of degradation under nitrogen atmosphere. Due to the importance of these compounds as possible reaction initiators and also as potentially bioactive substances (herbicides, acaricides, fungicides), the study on their thermal degradation could give useful information on the environmental impact of the degradation products resulting by the thermal processing of the plants which could possible retain these compounds, when the initial degradation temperature is exceeded.


Diazoaminoderivatives Degradation mechanism TG-FTIR Thermal degradation Thermal stability 


  1. 1.
    Odochian L, Mocanu AM, Moldoveanu C, Carja G, Oniscu C. Study by thermal methods on some new hydrazinic complexes. J Therm Anal Calorim. 2008;94:329–34.CrossRefGoogle Scholar
  2. 2.
    Mocanu AM, Odochian L, Carja G, Oniscu C. Study on thermal behavior of some new diazoaminoderivatives. Roman Biotechnol Lett. 2008;13(6):3990–8.Google Scholar
  3. 3.
    Mocanu AM, Odochian L, Moldoveanu C, Carja G, Oniscu C. Study by thermal methods on some new hydrazinic complexes. Rev Chim. 2009;60:928–33.Google Scholar
  4. 4.
    Mocanu AM, Odochian L, Apostolescu N, Moldoveanu C. TG-FTIR study on thermal degradation in air of some new diazoaminoderivatives. J Therm Anal Calorim. 2010;100:615–22. doi: 10.1007/s10973-009-0005-8.CrossRefGoogle Scholar
  5. 5.
    L. Odochian, M. Dumitras, Teoria cinetica si mecanismul reactiilor in lant. I Reactii in lant simplu, Ed. Matrix ROM, Bucuresti; 2003. p. 38.Google Scholar
  6. 6.
    Díaz JA, Vega S, Expósito MA, Sánchez Mateo CC, Darias V. Synthesis and antidepressant evaluation of new hetero[2, 1]benzothiazepine derivatives. Arch Pharm. 1996;329(7):352–60.CrossRefGoogle Scholar
  7. 7.
    Hollay KL, Kookana RS, Noy DM, Smith JG, Wilhelm N. Persistence and leaching of sulfonylurea herbicides over a 4-year period in the highly alkaline soils of south-eastern Australia. Aust J Exp Agric. 2006;46(8):1069–76.CrossRefGoogle Scholar
  8. 8.
    Hollay KL, Kookana RS, Noy DM, Smith JG, Wilhelm N. Persistence and leaching of imazethapyr and flumetsulam herbicides over a 4-year period in the highly alkaline soils of south-eastern Australia. Aust J Exp Agric. 2006;46(5):669–74.CrossRefGoogle Scholar
  9. 9.
    Strebe AT, Talbert ER. Sorption and mobility of flumetsulam in several soils. Weed Sci. 2001;49(6):806–13.CrossRefGoogle Scholar
  10. 10.
    Jabusch TW, Tjeerdema RS. Partitioning of penoxsulam, a new sulfonamide herbicide. J Agric Food Chem. 2005;53:7179–83.CrossRefGoogle Scholar
  11. 11.
    Odochian L. Study of the nature of the crystallization water in some magnesium hydrates by thermal methods. J Therm Anal Calorim. 1995;45(6):1437–48.CrossRefGoogle Scholar
  12. 12.
    Odochian L, Dulman V, Dumitras M, Pui A. Study by thermal methods on the materials obtained by dye removal from waste waters with beech flour. J Therm Anal Calorim. 2007;89(2):625–31.CrossRefGoogle Scholar
  13. 13.
    Dumitras M, Odochian L. Study on the influence of PTFE particle size on the polymer thermal behavior: I. Melting. J Therm Anal Calorim. 2002;69(2):599–606.CrossRefGoogle Scholar
  14. 14.
    Jie L, Yuwen L, Jiugyan S, Zhiyoug W, Ling H, Xi Y, Cunxin W. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG-FTIR. Thermochim Acta. 2008;467(1–2):20–9.CrossRefGoogle Scholar
  15. 15.
    Chuang FS. Analysis of thermal degradation of diacetylene-containing polyurethane copolymers. Polym Degrad Stab. 2007;92(7):1393–407.CrossRefGoogle Scholar
  16. 16.
    Barrall EM. Precise determination of melting and boiling points by differential thermal analysis and differential scanning calorimetry. Thermochim Acta. 1973;5(4):377–89.CrossRefGoogle Scholar
  17. 17.
    Nenitescu CD (ed). Chimie organica, vol I. Bucuresti: Didactica si Pedagogica; 1974. p. 584, 601.Google Scholar
  18. 18.
    Whitely N, Ozao R, Cao Y, Pan WP. Multi-utilization of chicken litter as a biomass source. Part II. Pyrolisis. Energy Fuels. 2006;20:2666–2671.Google Scholar
  19. 19.
    Pawlowski KH. Wirkungsmechanismen von Bisphenol-A-bis(diphenylphosphat) als Flammschutzmittel in Polycarbonat/Acrylnitril-Butadien-Styrol-Copolymerisat. BAM-Dissertationsreihe Band 33, Berlin; 2008 (ISBN 978-3-9812072-3-1).Google Scholar
  20. 20.
    Schonherr R. TG-FTIR Atlas Elastomere. D-Burgdorf: Verlag W.KSchonherr; 1996.Google Scholar
  21. 21.
    Walter D, Buxbaum G, Laqua W. The mechanism of the thermal transformation from goethite to hematite. J Therm Anal Calorim. 2001;63(3):733–48.CrossRefGoogle Scholar
  22. 22.
    Opfermann JR. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60(2):641–58.CrossRefGoogle Scholar
  23. 23.
    NIST Chemistry Webbook. 2005. NIST Standard Reference Database number 69.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Anca Mihaela Mocanu
    • 1
  • Lucia Odochian
    • 2
  • N. Apostolescu
    • 1
  • C. Moldoveanu
    • 2
  1. 1.“Gh. Asachi” University, Faculty of Chemical EngineeringIassyRomania
  2. 2.“Al. I. Cuza” University, Faculty of ChemistryIassyRomania

Personalised recommendations