Journal of Thermal Analysis and Calorimetry

, Volume 102, Issue 3, pp 975–982 | Cite as

Effect of compatibilization on thermal degradation kinetics of HDPE-based composites containing cellulose reinforcements

  • Maurizio Avella
  • Roberto Avolio
  • Irene Bonadies
  • Cosimo Carfagna
  • Maria Emanuela Errico
  • Gennaro Gentile


Dynamic thermogravimetric analysis under nitrogen flow was used to investigate the thermal decomposition process of high-density poly(ethylene) (HDPE)-based composites reinforced with cellulose fibers obtained from the recycling of multilayer carton scraps, as a function of the cellulose content and the compatibilization. The Friedman, Flynn–Wall–Ozawa, and Coats–Redfern methods were used to determine the apparent activation energy (E a) of the thermal degradation of the cellulose component into the composites. E a has been found dependent on the cellulose amount and on the cellulose/polymer matrix interfacial adhesion. In particular, it has been evidenced an increase of the cellulose thermal stability as a consequence of the improved interfacial adhesion between the components in NFR composites.


NFR composites Cellulose Compatibilization TGA Thermal degradation 


  1. 1.
    Bogoeva G, Avella M, Malinconico M, Buzarovska A, Grozdanov A, Gentile G, Errico ME. Natural fiber eco-composites. Polym Compos. 2007;28(1):98–107.CrossRefGoogle Scholar
  2. 2.
    Joshia SV, Drzal LT, Mohanty AK, Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? J Compos A. 2004;35:371–6.CrossRefGoogle Scholar
  3. 3.
    Avella M, Casale L, Dell’Erba R, Focher B, Martuscelli E, Marzetti A. Broom fibers as reinforcing materials for polypropylene-based composites. J Appl Polym Sci. 1997;68(7):1077–89.CrossRefGoogle Scholar
  4. 4.
    Awal A, Ghosh SB, Sain M. Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers. J Therm Anal Calorim. 2010;99(2):695–701.CrossRefGoogle Scholar
  5. 5.
    Bouza R, Marco C, Ellis G, Martín Z, Gómez MA, Barral L. Analysis of the isothermal crystallization of polypropylene/wood flour composites. J Therm Anal Calorim. 2008;94(1):119–27.CrossRefGoogle Scholar
  6. 6.
    Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M. Composite materials “Green” composites from recycled cellulose and poly(lactic acid): physico-mechanical and morphological properties evaluation. J Mater Sci. 2005;40:4221–9.CrossRefGoogle Scholar
  7. 7.
    Baroulaki I, Mergos JA, Pappa G, Tarantili PA, Economides D, Magoulas K, Dervos CT. Performance of polyolefin composites containing recycled paper fibers. Polym Adv Technol. 2006;17(11–12):954–66.CrossRefGoogle Scholar
  8. 8.
    Ambrose CA, Hooper R, Potter AK, Singh MM. Diversion from landfill: quality products from valuable plastics. Resour Conserv Recycl. 2002;36(4):309–18.CrossRefGoogle Scholar
  9. 9.
    Avella M, Avolio R, Bonadies I, Carfagna C, Errico ME, Gentile G. Recycled multilayer cartons as cellulose source in HDPE based composites: compatibilization and structure-properties relationships. J Appl Polym Sci. 2009;114(5):2978–85.CrossRefGoogle Scholar
  10. 10.
    Joly C, Kofman M, Gauthier R. Polypropylene/cellulosic fiber composites: chemical treatment of the cellulose assuming compatibilization between the two materials. J Macromol Sci Pure Appl Chem. 1996;33(12):1981–96.CrossRefGoogle Scholar
  11. 11.
    Keener TJ, Stuart RK, Brown TK. Maleated coupling agents for natural fibre composites. J Compos A. 2004;35:357–62.CrossRefGoogle Scholar
  12. 12.
    Avella M, Bogoeva-Gaceva G, Bužarovska A, Errico ME, Gentile G, Grozdanov A. Poly(lactic acid)-based biocomposites reinforced with kenaf fibers. J Appl Polym Sci. 2008;108:3542–51.CrossRefGoogle Scholar
  13. 13.
    Avella M, Bogoeva-Gaceva G, Bužarovska A, Errico ME, Gentile G, Grozdanov A. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) based biocomposites reinforced with kenaf fibres. J Appl Polym Sci. 2007;104:3192–200.CrossRefGoogle Scholar
  14. 14.
    Song B, Wang Y, Bai H, Liu L, Li Y, Zhang J, Zhou Z. Crystallization and melting behaviors of maleic anhydride grafted poly(propylene) nucleated by an aryl amide derivative. J Therm Anal Calorim. 2010;99(2):563–70.CrossRefGoogle Scholar
  15. 15.
    Kim H-S, Yang H-S, Kim H-J, Park H-J. Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. J Therm Anal Calorim. 2004;76:395–404.CrossRefGoogle Scholar
  16. 16.
    Bajer K, Kaczmarek H, Dzwonkowski J, Stasiek A, Ołdak D. Photochemical and thermal stability of degradable PE/paper waste composites obtained by extrusion. J Appl Polym Sci. 2007;103:2197–206.CrossRefGoogle Scholar
  17. 17.
    Beg MDH, Pickering KL. Accelerated weathering of unbleached and bleached Kraft wood fibre reinforced polypropylene composites. Polym Degrad Stab. 2008;93:1939–46.CrossRefGoogle Scholar
  18. 18.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci Polym Symp. 1964;6(1):183–95.Google Scholar
  19. 19.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Polym Lett. 1966;4(5):323–8.CrossRefGoogle Scholar
  20. 20.
    Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–72.CrossRefGoogle Scholar
  21. 21.
    Sclavons M, Carlier V, De Roover B, Franquinet P, Devaux J, Legras R. The anhydride content of some commercial PP-g-MA: FTIR and titration. J Appl Polym Sci. 1996;62(8):1205–10.CrossRefGoogle Scholar
  22. 22.
    Rodgers JL, Nicewander WA. Thirteen ways to look at the correlation coefficient. Am Stat. 1988;42:59–66.CrossRefGoogle Scholar
  23. 23.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.CrossRefGoogle Scholar
  24. 24.
    Achilias DS, Karabela MK, Sideridou ID. Thermal degradation and isoconversional kinetic analysis of light-cured dimethacrylate copolymers. J Therm Anal Calorim. 2010;99(3):917–23.CrossRefGoogle Scholar
  25. 25.
    Ernesto Fischer P, Jou CS, Gokalgandhi SS. Obtaining the kinetic parameters from thermogravimetry using a modified Coats and Redfern technique. Ind Eng Chem Res. 1987;26(5):1037–40.CrossRefGoogle Scholar
  26. 26.
    Bigger SW, Scheirs J, Camino G. An investigation of the kinetics of cellulose degradation under non-isothermal conditions. Polym Degrad Stab. 1988;62:33–40.CrossRefGoogle Scholar
  27. 27.
    Soares S, Camino G, Levchikt S. Comparative study of the thermal decomposition of pure cellulose and pulp paper. Polym Degrad Stab. 1995;49:275–83.CrossRefGoogle Scholar
  28. 28.
    Scheirs J, Camino G, Tumiatti W. Overview of water evolution during the thermal degradation of cellulose. Eur Polym J. 2001;37:933–42.CrossRefGoogle Scholar
  29. 29.
    Araujo JR, Waldman WR, De Paoli MA. Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polym Degrad Stab. 2008;93:1770–5.CrossRefGoogle Scholar
  30. 30.
    Sapieha S, Pupo JF, Schreiber HP. Thermal degradation of cellulose-containing composites during processing. J Appl Polym Sci. 1989;37:233–40.CrossRefGoogle Scholar
  31. 31.
    Shafizadeh F, Bradbury AGW. Thermal degradation of cellulose in air and nitrogen at low temperature. J Appl Polym Sci. 1979;23:1431–42.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Maurizio Avella
    • 1
  • Roberto Avolio
    • 1
  • Irene Bonadies
    • 1
  • Cosimo Carfagna
    • 1
  • Maria Emanuela Errico
    • 1
  • Gennaro Gentile
    • 1
  1. 1.Istituto di Chimica e Tecnologia dei PolimeriConsiglio Nazionale delle RicerchePozzuoliItaly

Personalised recommendations