Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 101, Issue 2, pp 455–461 | Cite as

Review of the thermodynamic and transport properties of EuBr2–RbBr binary system

  • Leszek Rycerz
  • Ewa Ingier-Stocka
  • Slobodan Gadzuric
  • Marcelle Gaune-Escard
Article

Abstract

Differential Scanning Calorimetry was used to study phase equilibrium in EuBr2–RbBr binary system. It was established that this system includes two eutectics and three stoichiometric compounds. First of them, Rb2EuBr4, decomposes peritectically at 778 K. Second one, RbEuBr3, undergoes the solid–solid phase transition at 732 K and melts incongruently at 852 K. Third compound, RbEu2Br5, melts congruently at 888 K. The composition and temperature values of eutectics were determined as x(EuBr2) = 0.316; T eut = 776 K and x(EuBr2) = 0.797; T eut = 859 K. Mixing enthalpy was measured by direct calorimetry on the whole composition range. The minimum of the mixing enthalpy occurs around the composition x(EuBr2) ≈ 0.4. The electrical conductivity of liquid mixtures was also investigated over the whole composition range and measured down to temperatures below solidification. The specific conductance (liquid phase) plotted against the mole fraction of EuBr2 shows a broad minimum at x(EuBr2) ~ 0.6. The activation energy for conductivity changes with temperature. Results obtained are discussed in terms of possible complex formation.

Keywords

Europium(II) bromide Phase diagram Electrical conductivity Mixing enthalpy 

Notes

Acknowledgements

L.R, E.I–S and S.G wish to thank the Ecole Polytechnique de Marseille for their hospitality and support during this study.

References

  1. 1.
    Wicks CE, Block FE. Thermodynamic properties of 65 elements—their oxides, halides, carbides and nitrides. U.S. Bureau of Mines Bulletin 605. Washington: U.S. Government Printing Office; 1963.Google Scholar
  2. 2.
    Thoma RE. The rare halides. In: Eyring L, editor. Progress in the science and technology of the rare earths, vol. 2. New York: Pergamon Press; 1966. p. 90–121.Google Scholar
  3. 3.
    Gmelin L. Gmelin handbook of inorganic chemistry. Leipzig: Verlag Chemie g.m.b.H; 1978. pp. 65–76.Google Scholar
  4. 4.
    Nouveau Traité de Chimie Minérale Sous la direction de P. Pascal. Masson et Cie editors, Vol. 7. Paris; 1953. p. 771.Google Scholar
  5. 5.
    Haschke JM, Eick HA. The vaporization thermodynamics of europium dibromide. J Phys Chem. 1970;74:1806–8.CrossRefGoogle Scholar
  6. 6.
    YuV Zorenko, Turchlak RM, Gryk W, Grinberg M. Luminescent spectroscopy of Eu2+ centers in CsBr: Eu single crystals at 10–550 K. J Lumin. 2004;106:313–20.CrossRefGoogle Scholar
  7. 7.
    US Application 20040126489.Google Scholar
  8. 8.
    US Patent 7,038,221.Google Scholar
  9. 9.
    Rycerz L, Gadzuric S, Ingier-Stocka E, Gaune-Escard M. Thermodynamic and structural properties of high temperature solid and liquid EuBr2. J Nucl Mater. 2005;344:115–9.CrossRefGoogle Scholar
  10. 10.
    Gadzuric S, Ingier-Stocka E, Rycerz L, Gaune-Escard M. Phase diagram and electrical conductivity of EuBr2–LiBr binary system. J Alloy Comp. 2005;397:63–7.CrossRefGoogle Scholar
  11. 11.
    Ingier-Stocka E, Gadzuric S, Rycerz L, Cieslak-Golonka M, Gaune-Escard M. Phase diagram and electrical conductivity of the EuBr2–NaBr binary system. J Nucl Mater. 2005;344:120–3.CrossRefGoogle Scholar
  12. 12.
    Rycerz L, Ingier-Stocka E, Cieslak-Golonka M, Wojciechowska A, Gadzuric S, Gaune-Escard M. Physicochemical properties of the EuBr2–KBr binary system. J Alloy Comp. 2008;450:157–61.CrossRefGoogle Scholar
  13. 13.
    Gadzuric S. Experimental study of thermodynamic, transport and structural properties of lanthanide bromide systems. Properties prediction by Data Mining Statistical Techniques. Ph. D. Thesis, Universite de Provence, Marseille, France, 2006.Google Scholar
  14. 14.
    Rycerz L, Ingier-Stocka E, Gadzuric S, Gaune-Escard M. Thermodynamic functions of definite compounds formed in EuBr2–MBr binary systems (M = K, Rb). J Chem Eng Data. 2008;53:1266–70.CrossRefGoogle Scholar
  15. 15.
    Rycerz L, Ingier-Stocka E, Gadzuric S, Gaune-Escard M. Electrical conductivity of the molten EuBr2–MBr binary mixtures (M = Li, Na, K, Rb, or Cs). J Mol Liq. 2008;140:78–83.CrossRefGoogle Scholar
  16. 16.
    Potapov A, Gaune-Escard M. Deviations from the Arrhenius equation of electrical conductivity polytherms. In: Øye HA, Jagtøyen A, editors. Proceedings of international symposium on ionic liquids in honour of professor Marcelle Gaune-Escard. Carry le Rouet, France; 2003, June 26–28. pp. 477–81.Google Scholar
  17. 17.
    Rycerz L, Ingier-Stocka E, Gaune-Escard M. Phase diagram and electrical conductivity of the CeBr3–CsBr binary system. J Thermal Anal Calorim. 2009;97:1015–22.CrossRefGoogle Scholar
  18. 18.
    Ingier-Stocka E, Rycerz L, Berkani M, Gaune-Escard M. Thermodynamic and transport properties of the PrBr3–MBr binary systems (M = Li, Na). J Mol Liq. 2009;148:40–4.CrossRefGoogle Scholar
  19. 19.
    Rycerz L, Ingier-Stocka E, Gadzuric S, Gaune-Escard M. Phase diagram and electrical conductivity of the CeBr3–RbBr binary system. J Alloy Comp. 2008;450:175–80.CrossRefGoogle Scholar
  20. 20.
    Ingier-Stocka E, Rycerz L, Gadzuric S, Gaune-Escard M. Thermal and conductometric studies of the CeBr3–MBr binary systems (M = Li, Na). J Alloy Comp. 2008;450:162–6.CrossRefGoogle Scholar
  21. 21.
    Rycerz L, Ingier-Stocka E, Gadzuric S, Gaune-Escard M. Phase diagram and electrical conductivity of CeBr3–KBr. Z Naturforsch. 2007;62a:197–204.Google Scholar
  22. 22.
    Gadzuric S, Ingier-Stocka E, Rycerz L, Gaune-Escard M. Electrical conductivity of molten binary NdBr3–alkali bromide mixtures. Z Naturforsch. 2004;59a:77–83.Google Scholar
  23. 23.
    Ziolek B, Rycerz L, Gadzuric S, Ingier-Stocka E, Gaune-Escard M. Electrical conductivity of molten LaBr3–MBr binary mixtures. Z Naturforsch. 2005;60a:75–80.Google Scholar
  24. 24.
    Delimarskii YUK. Elektrochimiia ionnych rasplavov. Moskva: Mietalurgiia; 1978 (in Russia).Google Scholar
  25. 25.
    Papatheodoru GN, Kleppa OJ. Enthalpies of mixing of liquid nickel(II) chloride-alkali chloride mixtures at 810 °C. J Inorg Nucl Chem. 1970;32:889–900.CrossRefGoogle Scholar
  26. 26.
    Papatheodoru GN, Kleppa OJ. Enthalpies of mixing in the liquid mixtures of the alkali chlorides with MnCl2, FeCl2 and CoCl2. J Inorg Nucl Chem. 1971;33:1249–78.CrossRefGoogle Scholar
  27. 27.
    Maroni VA, Caims EJ. In: Mamantov G editor. Molten salts. Characterization and analysis. New York, London: Marcel Deker; 1969. p. 231Google Scholar
  28. 28.
    Hayashi H, Uno K, Takechara Z, Katagiri A. Studies on the acid–base properties of the ZnBr2–NaBr molten salt system. J Electrochem Soc. 1993;140:386–9.CrossRefGoogle Scholar
  29. 29.
    Adya AK, Takagi R, Gaune-Escard M, Rycerz L, Fischer H. ILL experimental report, experiment N0 6-03-193. France, Grenoble. 14–22 May 1996Google Scholar
  30. 30.
    Van Artsdalen ER, Yaffe JS. Electrical conductance and density of molten salt systems: KCl–LiCl, KCl–NaCl and KCl–KI. J Phys Chem. 1955;59:118–27.CrossRefGoogle Scholar
  31. 31.
    Yaffe JS, van Artsdalen ER. Electrical conductance and density of pure moltenalkali halides. J Phys Chem. 1956;60:1125–31.CrossRefGoogle Scholar
  32. 32.
    Haschke JM, Eick HA. The preparation and some properties of europium bromides and hydrated bromides. J Inorg Nucl Chem. 1970;32:2153–8.CrossRefGoogle Scholar
  33. 33.
    Gaune-Escard M, Bogacz A, Rycerz L, Szczepaniak W. Heat capacity of LaCl3, CeCl3, PrCl3, NdCl3, GdCl3, DyCl3. J Alloy Comp. 1996;235:176–81.CrossRefGoogle Scholar
  34. 34.
    Rycerz L. High temperature characterization of LnX3 and LnX3–AX solid and liquid systems (Ln = Lanthanide, A = Alkali, X = Halide): thermodynamics and electrical conductivity. Ph. D. Thesis, Marseille; 2003.Google Scholar
  35. 35.
    Rycerz L. Thermochemistry of lanthanide halides and compounds formed in lanthanide halide-alkali metal halide systems (in Polish). Scientific papers of institute of inorganic chemistry and metallurgy of rare elements. Wroclaw University of Technology, Series Monographs 35, Wroclaw; 2004.Google Scholar
  36. 36.
    Gaune-Escard M. In: Gale R, Lovering DG editors. Molten salt techniques, Chapt. 5. New York, London: Plenum Press; 1991.Google Scholar
  37. 37.
    Seifert HJ. Ternary chlorides of the trivalent early lanthanides. Phase diagrams, crystal structures and thermodynamic properties. J Thermal Anal Calorim. 2002;67:789–826.CrossRefGoogle Scholar
  38. 38.
    Gaune-Escard M, Bogacz A, Rycerz L, Szczepaniak W. Calorimetric investigations of the MBr–NdBr3 melts (M = Li, Na, K, Cs). J Thermal Anal. 1995;45:1117–24.CrossRefGoogle Scholar
  39. 39.
    Gaune-Escard M, Bogacz A, Rycerz L, Szczepaniak W. Formation enthalpies of the MBr–LaBr3 liquid mixtures (M = Li, Na, K, Rb, Cs). Thermochim Acta. 1996;279:1–10.CrossRefGoogle Scholar
  40. 40.
    Gaune-Escard M, Bogacz A, Rycerz L, Szczepaniak W. Formation enthalpies of the MBr–NdBr3 liquid mixtures (M = Li, Na, K, Rb, Cs). Thermochim Acta. 1996;279:11–25.CrossRefGoogle Scholar
  41. 41.
    Sharpe G. Inorganic chemistry. New York: Longman; 1986. p. 146 and 659.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Leszek Rycerz
    • 1
  • Ewa Ingier-Stocka
    • 1
  • Slobodan Gadzuric
    • 2
  • Marcelle Gaune-Escard
    • 3
  1. 1.Faculty of Chemistry, Chemical Metallurgy GroupWroclaw University of TechnologyWroclawPoland
  2. 2.Faculty of Natural Science, Department of ChemistryUniversity of Novi SadNovi SadSerbia
  3. 3.Mecanique Energetique, Technopole de Chateau-GombertEcole PolytechniqueMarseille Cedex 13France

Personalised recommendations