Journal of Thermal Analysis and Calorimetry

, Volume 102, Issue 3, pp 1167–1173 | Cite as

Preparation of the Ca–diclofenac complex in solid state

Study of the thermal behavior of the dehydration, transition phase and decomposition
  • Marcelo Kobelnik
  • Douglas Lopes Cassimiro
  • Clóvis Augusto Ribeiro
  • Diógenes dos Santos Dias
  • Marisa Spirandeli Crespi


The Ca–diclofenac compound was prepared. Thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns, and microscopy analysis were used to characterize this compound. Details concerning the stages of dehydration, transition phase, and thermal decomposition as well as data of the kinetic parameters of these stages have been described here. The kinetic study of these stages was evaluated from several heating rates with a sample mass of 2 and 5 mg in open crucibles under nitrogen atmosphere. The obtained data were evaluated with the isoconversional kinetic method, where the value of activation energy (E a/kJ mol−1) was evaluated in function of the conversion degree (α). The results show that this compound is hygroscopic. The obtained data lead to a dependence on the sample mass, which results in two kinetic behavior patterns.


Diclofenac Dehydration Thermal decomposition Kinetic parameters 



We express our deepest gratitude to CAPES Foundation, Brazil, for financial support, and IPT—Instituto de Pesquisas Tecnológicas do Estado de São Paulo for TG curves.


  1. 1.
    Moser P, Sallmann A, Wiesenbergt I. Synthesis and quantitative structure-activity relationships of diclofenac analogues. J Med Chem. 1990;33:2358–68.Google Scholar
  2. 2.
    Agatonovic-Kustrin S, Zivanovic Lj, Zecevic M, Radulovic D. Spectrophotometric study of diclofenac–Fe(III) complex. J Pharm Biomed Anal. 1997;16:147–53.CrossRefGoogle Scholar
  3. 3.
    Kovala-Demertzi D. Transition metal complexes of diclofenac with potentially interesting anti-inflammatory activity. J Inorg Biochem. 2000;79:153–7.CrossRefGoogle Scholar
  4. 4.
    Konstandinidou M, Kourounakis A, Yiangou M, Hadjipetrou L, Kovala-Demertzi D, Hadjikakou S, Demertzis M. Anti-inflammatory properties of diclofenac transition metalloelement complexes. J Inorg Biochem. 1998;70:63–9.Google Scholar
  5. 5.
    Bucci R, Magri AD, Magri AL, Napoli A. Spectroscopic characteristics and thermal properties of divalent metal complexes of diclofenac. Polyhedron. 2000;19:2515–20.CrossRefGoogle Scholar
  6. 6.
    Kenawi Ihsan M, Barsoum Barsoum N, Youssef Maha A. Cetirizine dihydrochloride interaction with some diclofenac complexes. Eur J Pharm Sci. 2005;26:341–8.CrossRefGoogle Scholar
  7. 7.
    Kobelnik M, Bernabé GA, Ribeiro CA, Capela JMV, Fertonani FL. Kinetic of decomposition of iron (III)-diclofenac compound. J Therm Anal Calorim. 2009;97:493–6.CrossRefGoogle Scholar
  8. 8.
    Souza JL, Kobelnik M, Ribeiro CA, Capela JMV. Kinetics study of crystallization of PHB in presence of hydrociacids. J Therm Anal Calorim. 2009;97:525–8.CrossRefGoogle Scholar
  9. 9.
    Capela JMV, Capela MV, Ribeiro CA. Nonisothermal kinetic parameters estimated using nonlinear regression. J Math Chem. 2009;45:769–75.CrossRefGoogle Scholar
  10. 10.
    Galwey AK, Brown ME. Thermal decompositions of ionic solids. 1st ed. Amsterdan: Elsevier; 1999.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Marcelo Kobelnik
    • 1
    • 2
  • Douglas Lopes Cassimiro
    • 3
  • Clóvis Augusto Ribeiro
    • 3
  • Diógenes dos Santos Dias
    • 3
  • Marisa Spirandeli Crespi
    • 3
  1. 1.Instituto de Biociências, Letras e Ciências Exatas, Departamento de Química, UnespUniv. Estadual PaulistaSão José do Rio PretoBrazil
  2. 2.Centro Universitário do Norte PaulistaUNORPSão José do Rio PretoBrazil
  3. 3.Instituto de Química de Araraquara, UnespUniv Estadual PaulistaAraraquaraBrazil

Personalised recommendations