Journal of Thermal Analysis and Calorimetry

, Volume 102, Issue 3, pp 915–922 | Cite as

Curing behavior of epoxy resins with a series of novel curing agents containing 4,4′-biphenyl and varying methylene units

  • Qing Guo
  • Yan Huang
  • Yu-Ying Zhang
  • Li-Rong Zhu
  • Bao-Long Zhang


A new homologous series of curing agents (LCECAn) containing 4,4′-biphenyl and n-methylene units (n = 2, 4, 6) were successfully synthesized. The curing behaviors of a commercial diglycidyl ether of bisphenol-A epoxy (E-51) and 4,4′-bis(2,3-epoxypropoxy)biphenyl (LCE) by using LCECAn as the curing agent have been investigated by differential scanning calorimetry (DSC), respectively. The Ozawa equation was applied to the curing kinetics based upon the dynamic DSC data, and the isothermal DSC data were fitted using an autocatalytic curing model. The glass transition temperatures (T g) of the cured epoxy systems were determined by DSC upon the second heating, and the thermal decomposition temperatures (T d) were obtained by thermogravimetric (TG) analyses. The results show that the number of methylene units in LCECAn has little influence on the curing temperatures of E-51/LCECAn and LCE/LCECAn systems. In addition, the activation energies obtained by the dynamic method proved to be larger than those by the isothermal method. Furthermore, both the T g and T d of the cured E-51/LCECAn systems and LCE/LCECAn systems decreased with the increase in the number of methylene units in LCECAn.


Curing agent Curing behavior Curing kinetics DSC TG 



Financial support provided by the National Natural Science Foundation of China (No. 50673042), and the Doctoral Discipline Foundation of Ministry of Education of China (No. 20070055015) is gratefully acknowledged.


  1. 1.
    Zhang B-L, Tang G-L, Shi K-Y, You Y-C, Du Z-J, Yang J-F, et al. A study on properties of epoxy resin toughened by functionalized polymer containing rigid, rod-like moiety. Eur Polym J. 2000;36:205–13.CrossRefGoogle Scholar
  2. 2.
    He S, Shi K, Bai J, Zhang Z, Li L, Du Z, et al. Studies on the properties of epoxy resins modified with chain-extended ureas. Polymer. 2001;42:9641–7.CrossRefGoogle Scholar
  3. 3.
    He SJ, Shi KY, Guo XZ, Du ZJ, Zhang BL. Properties of methyltetrahydrophthalic anhydride-cured epoxy resin modified with MITU. Polym Adv Technol. 2009;20:130–4.CrossRefGoogle Scholar
  4. 4.
    Zhang B-L, Tang G-L, Shi K-Y, You Y-C, Du Z-J, Huang J-F. A study on the properties of epoxy resin toughened by a liquid crystal-type oligomer. J Appl Polym Sci. 1999;71:177–84.CrossRefGoogle Scholar
  5. 5.
    Ma S, Liu W, Su Q, Liu Y. Studies on the thermal properties of epoxy resins modified with two kinds of silanes. J Macromol Sci: Phys. 2010;49:43–56.CrossRefGoogle Scholar
  6. 6.
    Villanueva M, Fraga I, Rodríguez-Añón J, Proupín-Castiñeiras J. Study of the influence of a reactive diluent on the rheological properties of an epoxy-diamine system. J Therm Anal Calorim. 2009;98:521–5.CrossRefGoogle Scholar
  7. 7.
    Villanueva M, Martín-Iglesias J, Rodríguez-Añón J, Proupín-Castiñeiras J. Thermal study of an epoxy system DGEBA (n = 0)/mXDA modified with POSS. J Therm Anal Calorim. 2009;96:575–82.CrossRefGoogle Scholar
  8. 8.
    López J, Rico M, Montero B, Díez J, Ramírez C. Polymer blends based on an epoxy-amine thermoset and a thermoplastic. J Therm Anal Calorim. 2009;95:369–76.CrossRefGoogle Scholar
  9. 9.
    Yousefi A, Lafleur PG, Gauvin R. Kinetic studies of thermoset cure reactions: a review. Polym Compos. 1997;18:157–68.CrossRefGoogle Scholar
  10. 10.
    Kamal MR. Thermoset characterization for moldability analysis. Polym Eng Sci. 1974;14:231–9.CrossRefGoogle Scholar
  11. 11.
    Batch GL, Macosko CW. Kinetic model for crosslinking free radical polymerization including diffusion limitations. J Appl Polym Sci. 1992;44:1711–29.CrossRefGoogle Scholar
  12. 12.
    Patel PS, Shah PP, Patel SR. Differential scanning calorimetry investigation of curing of bisphenolfurfural resins. Polym Eng Sci. 1986;26:1186–90.CrossRefGoogle Scholar
  13. 13.
    Vinnik R, Roznyatovsky V. Kinetic method by using calorimetry to mechanism of epoxy-amine cure reaction. J Therm Anal Calorim. 2003;73:807–17.CrossRefGoogle Scholar
  14. 14.
    Liu X, Sheng X, Lee J, Kessler M. Isothermal cure characterization of dicyclopentadiene. J Therm Anal Calorim. 2007;89:453–7.CrossRefGoogle Scholar
  15. 15.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  16. 16.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.CrossRefGoogle Scholar
  17. 17.
    Kamal MR, Sourour S. Kinetics and thermal characterization of thermoset cure. Polym Eng Sci. 1973;13:59–64.CrossRefGoogle Scholar
  18. 18.
    Mormann W, Bröcher M. “Liquid crystalline” thermosets from 4,4′-bis(2, 3-epoxypropoxy)biphenyl and aromatic diamines. Macromol Chem Phys. 1996;197:1841–51.CrossRefGoogle Scholar
  19. 19.
    Ando M, Uryu T. Synthesis of polymer materials by low energy electron beam. XIII. Structure and properties of EB-cured polymers of bifunctional monomer with biphenyl moiety as mesogenic group. J Polym Sci A: Polym Chem. 1990;28:2575–84.CrossRefGoogle Scholar
  20. 20.
    Giamberjni M, Amendola E, Carfagna C. Liquid crystalline epoxy thermosets. Mol Cryst Liq Cryst. 1995;266:9–22.CrossRefGoogle Scholar
  21. 21.
    Barton JM. Monitoring the curing reaction of an aromatic amine/epoxide resin system by differential scanning calorimetry (DSC): determination and significance of the activation energy. Makromol Chem. 1973;171:247–51.CrossRefGoogle Scholar
  22. 22.
    Punchaipetch P, Ambrogi V, Giamberini M, Brostow W, Carfagna C, D’Souza NA. Epoxy + liquid crystalline epoxy coreacted networks: I. Synthesis and curing kinetics. Polymer. 2001;42:2067–75.CrossRefGoogle Scholar
  23. 23.
    Prime RB. Differential scanning calorimetry of the epoxy cure reaction. Polym Eng Sci. 1973;13:365–71.CrossRefGoogle Scholar
  24. 24.
    Riccardi CC, Dupuy J, Williams RJJ. A simple model to explain the complex kinetic behavior of epoxy/anhydride systems. J Polym Sci B: Polym Phys. 1999;37:2799–805.CrossRefGoogle Scholar
  25. 25.
    Peyser P, Bascom WD. Kinetics of epoxy resin polymerization using differential scanning calorimetry. J Appl Polym Sci. 1977;21:2359–73.CrossRefGoogle Scholar
  26. 26.
    González-Romero VM, Casillas N. Isothermal and temperature programmed kinetic studies of thermosets. Polym Eng Sci. 1989;29:295–301.CrossRefGoogle Scholar
  27. 27.
    Khanna U, Chanda M. Kinetics of anhydride curing of isophthalic diglycidyl ester using differential scanning calorimetry. J Appl Polym Sci. 1993;49:319–29.CrossRefGoogle Scholar
  28. 28.
    Hale A, Macosko CW, Bair HE. Glass transition temperature as a function of conversion in thermosetting polymers. Macromolecules. 1991;24:2610–21.CrossRefGoogle Scholar
  29. 29.
    Mathew AP, Packirisamy S, Thomas S. Studies on the thermal stability of natural rubber/polystyrene interpenetrating polymer networks: thermogravimetric analysis. Polym Degrad Stab. 2001;72:423–39.CrossRefGoogle Scholar
  30. 30.
    Gupta A, Singhal R, Nagpal AK. Reactive blends of epoxy resin (DGEBA) crosslinked by anionically polymerized polycaprolactam: process of epoxy cure and kinetics of decomposition. J Appl Polym Sci. 2004;92:687–97.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Qing Guo
    • 1
  • Yan Huang
    • 1
  • Yu-Ying Zhang
    • 1
  • Li-Rong Zhu
    • 1
  • Bao-Long Zhang
    • 1
  1. 1.Department of ChemistryNankai UniversityTianjinChina

Personalised recommendations