Journal of Thermal Analysis and Calorimetry

, Volume 101, Issue 3, pp 1027–1037 | Cite as

Thermal properties of PA 6 and PA 6 modified with copolyamides and layered silicates

  • J. Ryba
  • A. Ujhelyiová
  • M. Krištofič
  • I. Vassová


This article focuses on the thermal properties of PA 6 and additives, i.e. ternary copolyamides, concentrates consisting of binary or ternary copolyamides + nanoadditive montmorillonite Bentonite 11958 or Cloisite 15A and PA 6 fibres modified with Bentonite, copolyamide and concentrate. The copolyamides are prepared from ε-caprolactam as a major comonomer and nylon salts AN2 from adipic acid + 1-(2-aminoethyl)piperazine and ADETA from adipic acid + diethylenetriamine. All copolyamides and concentrates exhibit lower melting temperatures T m and lower melting enthalpies ΔH m compared to neat PA 6. PA 6 fibres modified with 0.25–2.5 wt% MMT exhibit higher melting enthalpies in comparison with unmodified PA 6 fibres. PA 6 fibres modified with 10 wt% of ternary copolyamide containing 21.4 wt% of comonomers AN2 and ADETA have higher melting enthalpy as well. PA 6 fibres modified with 10 and 20 wt% of concentrate containing the same ternary copolyamide + 5 wt% of MMT have higher melting enthalpies and higher tensile strength in comparison with these characteristics of unmodified PA 6 fibres.


DSC Copolyamides Nanoadditives 



This study was supported by the Slovak Research and Development Agency under the contract APVV-0226-06 and VEGA Agency under the contract No 1/0406/08


  1. 1.
    Leszczynska A, Pielichowski K. Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposite. J Therm Anal Calorim. 2008;93:677–87.CrossRefGoogle Scholar
  2. 2.
    Pielichowski M, Leszczynska A. TG-FTIR study of the thermal degradation of polyoxymethylene(POM)/thermoplastic polyurethane (TPU) blends. J Therm Anal Calorim. 2004;78:631–7.CrossRefGoogle Scholar
  3. 3.
    Zhu G, Li Y, Yin J, Ling J, Shen Z. Thermal and crystalline properties of random copolymer of CL and DTC prepared by La(Oar)3. J Therm Anal Calorim. 2004;77:833–7.CrossRefGoogle Scholar
  4. 4.
    Loffler R, Navard P. DSC an X-ray studies of thermotropic four-monomer copolyester. Macromolecules. 1992;25:7172–9.CrossRefGoogle Scholar
  5. 5.
    Hatfield GR, Guo Y, Killinger WE, Andrejak RA, Roubicek M. Characterization of structure and morphology in two poly(ether-block-amide) copolymers. Macromolecules. 1993;26:6350–3.CrossRefGoogle Scholar
  6. 6.
    Krištofič M, Marcinčin A, Borsig A. Preparation, properties and application of modified fibres with piperazine rings. Polym Adv Technol. 1999;10:179–86.CrossRefGoogle Scholar
  7. 7.
    Krištofič M, Marcinčin A, Ujhelyiová A, Murárová A. Modification of PA 6 fibres with alkaline copolyamides. Chem Pap. 2000;54:53–8.Google Scholar
  8. 8.
    Krištofič M, Ujhelyiová A. Thermal properties of poly-ε-caprolactam and copolyamides based on ε-caprolactam. J Therm Anal Calorim. 2009;98:145–50.CrossRefGoogle Scholar
  9. 9.
    Krištofič M, Dulíková M, Vassová I, Ryba J. PA 6/Copolyamide/layered silicate fibres. Fibres Textiles Eastern Europe. 2007;15:34–6.Google Scholar
  10. 10.
    Edgar OB, Hill R. The p-phenylene linkage in linear high polymers: some structure-property relationships. J Polym Sci. 1952;8(1):1–22.CrossRefGoogle Scholar
  11. 11.
    Kaufman MH, Mark HF, Mesrobian RB. Preparation, properties and structure of polyhydrocarbons derived from p-xylene and related compound. J Polym Sci. 1954;13(68):3–20.CrossRefGoogle Scholar
  12. 12.
    Krištofič M, Marcinčin A, Ujhelyiová A. The DSC study of PA 6, polyamides and copolyamides. J Therm Anal Calorim. 2000;60:357–69.CrossRefGoogle Scholar
  13. 13.
    Tyan LH, Liu YCh, Wei KH. Thermally and mechanically enhanced clay/polyimide nanocomposites via reactive organoclay. Chem Mater. 1999;11:1942–7.CrossRefGoogle Scholar
  14. 14.
    Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O. Synthesis and properties of polyimide-clay hybrid. J Polym Sci Part A Polym Chem. 1993;31:2493–8.CrossRefGoogle Scholar
  15. 15.
    Kawasumi KM, Hasegawa N, Kato M, Usuki A, Okada A. Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules. 1997;30:6333–8.CrossRefGoogle Scholar
  16. 16.
    Tung J, Gupta RK, Simon GP, Edward GH, Bhattacharya SN. Rheological and mechanical comparative study of in situ polymerized and melt-blended nylon 6 nanocomposites. Polymer. 2005;46(10):405–18.Google Scholar
  17. 17.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O. Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with ε-caprolactam. J Polym Sci Part A Polym Chem. 1993;31:983–6.CrossRefGoogle Scholar
  18. 18.
    Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, et al. Synthesis of nylon 6-clay hybrid. J Mater Res. 1993;8:1479–84.Google Scholar
  19. 19.
    Peila R, Lengvinaite S, Malucelli G, Priola A, Ronchetti J. Modified organophilic montmorillonite/LDPE nanocomposites. Therm Anal Cal. 2008;91:107–11.CrossRefGoogle Scholar
  20. 20.
    Janowska G, Mikolajczyk T, Olejnik M. Effect of montmorillonite content and type of its modifier on the thermal properties and flammability of polyimideamide nanocomposite fibres. J Therm Anal Calorim. 2008;92:495–9.CrossRefGoogle Scholar
  21. 21.
    Stankowski M, Kropidlowska A, Gazda M, Haponiuk JT. Properties of polyamide 6 and thermoplastic polyurethane blends containing modified montmorillonites. J Therm Anal Calorim. 2008;94:817–23.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • J. Ryba
    • 1
  • A. Ujhelyiová
    • 1
  • M. Krištofič
    • 1
  • I. Vassová
    • 1
  1. 1.Department of Fibres and Textile Chemistry, Faculty of Chemical and Food Technology, Institute of Polymer MaterialsSlovak University of Technology in BratislavaBratislavaSlovak Republic

Personalised recommendations