Skip to main content
Log in

Coordination and inclusion compounds formed by addition of quinoline (Q) or isoquinoline (Iq) to a metal(II) dibenzoylmethanate (Co, Ni, Zn, Cd)

Composition, structure and thermal dissociation properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Three isomorphous series of new compounds are reported: complexes [M(DBM)2Q2] and [M(DBM)2Iq2] (M = M(II) = Co, Ni, Zn, Cd; DBM is C6H5COCHCOC6H5 ) and inclusion compounds [M(DBM)2Q2]*Q (M = Co, Zn, Cd). All the compounds comprise a trans configured octahedral complex molecule. Inclusion compounds of modified Zn and Cd DBM complexes are reported for the first time and their inclusion ability is attributed to the trans isomeric state induced by the bulky Q or Iq ligand. The TG measurements indicate the following order of thermal stability of the complexes defined by the strength of the metal–ligand bonds: Ni > Co > Cd > Zn. The inclusion compounds do not follow this trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. MacNicol DD, Toda F, Bishop R. Solid-state supramolecular chemistry: crystal engineering. In: Atwood JL, Davies JED, MacNicol DD, Vögtle F, editors. Comprehensive supramolecular chemistry, vol. 6. Oxford: Pergamon; 1996.

    Google Scholar 

  2. Dyadin YA, Terekhova IS, Rodionova TV, Soldatov DV. Half-century history of clathrate chemistry. J Struct Chem. 1999;40:645–53.

    Article  CAS  Google Scholar 

  3. Soldatov DV, Terekhova IS. Supramolecular chemistry and crystal engineering. J Struct Chem. 2005;46:S1–8.

    Article  CAS  Google Scholar 

  4. Enright GD, Udachin KA, Moudrakovski IL, Ripmeester JA. Thermally programmable gas storage and release in single crystals of an organic van der Waals host. J Am Chem Soc. 2003;125:9896–7.

    Article  CAS  Google Scholar 

  5. Rudkevich DM. Progress in supramolecular chemistry of gases. Eur J Org Chem. 2007;3255–70.

    Article  Google Scholar 

  6. Madene A, Jacquot M, Scher J, Desobry S. Flavour encapsulation and controlled release—a review. Int J Food Sci Technol. 2006;41:1–21.

    CAS  Google Scholar 

  7. Toda F. Solid state organic chemistry: efficient reactions, remarkable yields, and stereoselectivity. Acc Chem Res. 1995;28:480–6.

    Article  CAS  Google Scholar 

  8. Bishop R. Designing new lattice inclusion hosts. Chem Soc Rev. 1996;25:311–9.

    Article  CAS  Google Scholar 

  9. Nassimbeni LR. Physicochemical aspects of host–guest compounds. Acc Chem Res. 2003;36:631–7.

    Article  CAS  Google Scholar 

  10. Seeber G, Tiedemann BEF, Raymond KN. Supramolecular chirality in coordination chemistry. Top Curr Chem. 2006;265:147–83.

    Article  CAS  Google Scholar 

  11. Uemura T, Horike S, Kitagawa S. Polymerization in coordination nanospaces. Chem Asian J. 2006;1:36–44.

    Article  CAS  Google Scholar 

  12. Dickert FL, Haunschild A. Sensor materials for solvent vapor detection—donor–acceptor and host–guest interactions. Adv Mater. 1993;5:887–95.

    Article  CAS  Google Scholar 

  13. Ziganshin MA, Yakimov AV, Konovalov AI, Antipin IS, Gorbatchuk VV. Effect of the size of calixarene macrocycle on the thermodynamic parameters of formation of inclusion compounds in guest vapor–solid host systems. Russ Chem Bull. 2004;53:1536–43.

    Article  CAS  Google Scholar 

  14. Davis ME, Brewster ME. Cyclodextrin-based pharmaceuticals: past, present and future. Nat Rev Drug Discov. 2004;3:1023–35.

    Article  CAS  Google Scholar 

  15. Zhou H, Groves JT. Host–guest interactions of cyclodextrins and metalloporphyrins: supramolecular building blocks toward artificial heme proteins. J Porphyrins Phthalocyanines. 2004;8:125–40.

    Article  CAS  Google Scholar 

  16. Soldatov DV. Soft supramolecular materials. J Inclu Phenom. 2004;48:3–9.

    Article  CAS  Google Scholar 

  17. Soldatov DV. Stimuli-responsive supramolecular solids: functional porous and inclusion materials. In: Urban MW, editor. Stimuli-responsive polymeric films and coatings. ACS Symposium Series, vol. 912. Washington: ACS; 2005. p. 214–31.

  18. Friščić T, Meštrović E, Šamec DŠ, Kaitner B, Fábián L. One-pot mechanosynthesis with three levels of molecular self-assembly: coordination bonds, hydrogen bonds and host-guest inclusion. Chem Eur J. 2009;15:12644–52.

    Article  Google Scholar 

  19. Soldatov DV. Soft organic and metal-organic frameworks with porous architecture: from wheel-and-axle to ladder-and-platform design of host molecules. J Chem Crystallogr. 2006;36:747–68.

    Article  CAS  Google Scholar 

  20. Jóna E, Šimon P, Jorík V, Koman M. A thermochemical investigation of guest-host interactions in labile Werner clathrates of the [Ni(4-EtPy)4(NCS)2]*G type (G = methyl derivatives of benzene). Thermochim Acta. 1997;290:219–25.

    Article  Google Scholar 

  21. Logvinenko VA, Soldatov DV. Processes of thermal dissociation of clathrates on the base of coordination compounds. J Therm Anal Calorim. 1999;56:485–92.

    Article  CAS  Google Scholar 

  22. Nassimbeni LR. Useful techniques in host-guest chemistry. Supramol Chem. 2000;12:161–7.

    Article  CAS  Google Scholar 

  23. Logvinenko V, Drebushchak V, Pinakov D, Chekhova G. Thermodynamic and kinetic stability of inclusion compounds under heating. J Therm Anal Calorim. 2007;90:23–30.

    Article  CAS  Google Scholar 

  24. Soldatov DV, Enright GD, Ripmeester JA. Modified metal dibenzoylmethanates and their clathrates. Part I. Clathration ability of dipyridinebis(dibenzoylmethanato)nickel(II), a novel metal-complex host. Supramol Chem. 1999;11:35–47.

    Article  CAS  Google Scholar 

  25. Soldatov DV, Ripmeester JA. 4-Vinylpyridine-modified nickel and cobalt dibenzoylmethanates as new hosts: Inclusions with carbon tetrachloride and chlorobenzene. Supramol Chem. 2001;12:357–68.

    Article  CAS  Google Scholar 

  26. Soldatov DV, Ripmeester JA. Novel 4-vinylpyridine-extended metal-dibenzoylmethanate host frameworks: Structure, polymorphism, and inclusion properties. Chem Eur J. 2001;7:2979–94.

    Article  CAS  Google Scholar 

  27. Soldatov DV, Enright GD, Ratcliffe CI, Henegouwen AT, Ripmeester JA. Inclusion potential, polymorphism, and molecular isomerism of metal dibenzoylmethanates coordinated with 2-methylpyridine. Chem Mater. 2001;13:4322–34.

    Article  CAS  Google Scholar 

  28. Soldatov DV, Enright GD, Ripmeester JA. Inclusion ability of 4-phenylpyridine-extended nickel(II) dibenzoylmethanate, a new metal-complex host. Chem Mater. 2002;14:348–56.

    Article  CAS  Google Scholar 

  29. Soldatov DV, Enright GD, Zanina AS, Sokolov IE. Stabilization of guest-free forms of metal dibenzoylmethanate host type through self-inclusion of a ligand fragment into the intramolecular pocket. J Supramol Chem. 2002;2:441–8.

    Article  CAS  Google Scholar 

  30. Soldatov DV, Ripmeester JA. Ladder-and-platform metal-organic hosts: molecular and crystal structure of polymeric and dimeric host complexes incorporating nickel(II) dibenzoylmethanate units connected with 4,4′-bipyridyl. Mendeleev Commun 2004;101–3.

  31. Soldatov DV, Ukraintseva EA, Logvinenko VA. Structure and stability of a clathrate of bis(dibenzoylmethanato)-dipyridine-nickel(II) with acetone (1:2). J Struct Chem. 2007;48:938–48.

    Article  CAS  Google Scholar 

  32. Ukraintseva EA, Soldatov DV. Vapour pressure of guest and thermodynamic stability of inclusion compounds [Ni(DBM)2Py2]*2G (DBM = dibenzoylmethanate anion, G = pyridine, tetrahydrofuran and chloroform). J Inclu Phenom, 2010 (in press).

  33. Soldatov DV, Logvinenko VA, Dyadin YA, Lipkowski J, Suwinska K. [MPy4(NCO)2]*2Py clathrates (M = M(II) = Mn, Fe, Co, Ni, Cu, Zn, Cd; Py = pyridine). J Struct Chem. 1999;40:757–71.

    Article  CAS  Google Scholar 

  34. Soldatov DV, Ukraintseva EA, Logvinenko VA, Dyadin YA, Grachev EV, Manakov AY. Thermodynamic dissociation constants for [MPy4(NO3)2]*2Py clathrates (M = Mn, Co, Ni, Cu). Supramol Chem. 2000;12:237–46.

    Article  CAS  Google Scholar 

  35. Ukraintseva EA, Soldatov DV, Dyadin YA, Galkin PS, Mikheev AN. Vapor pressures of the pyridine guest and the thermodynamic parameters of dissociation of [MPy4(NCO)2]*2Py inclusion compounds (M = Mn, Fe, Co, and Ni). Russ J Phys Chem. 2003;77:1759–62.

    Google Scholar 

  36. Ukraintseva EA, Soldatov DV, Dyadin YA. Thermodynamic stability of the [M(pyridine)4X2]*2G clathrates as a function of the host components (M, X) and included guest (G). J Inclu Phenom. 2004;48:19–23.

    Article  CAS  Google Scholar 

  37. Meštrović E, Halasz I, Bučar D-K, Žgela M. Bis(dimethyl sulfoxide-κO)bis(1-phenylbutane-1,3-dionato-κ2O, O’)nickel(II). Acta Crystallogr. 2004;E60:m367–9.

    Google Scholar 

  38. Meštrović E, Bučar D-K. Bis(adamantylamine-κN)bis(1-phenylbutane-1,3-dionato-κ2O, O’)nickel(II). Acta Crystallogr. 2005;E61:m522–4.

    Google Scholar 

  39. Halasz I, Horvat M, Biljan T, Meštrović E. Structural, spectroscopic and thermal characterisation of bis(dibenzoylmethanato)Cd(II) adducts with dimethylsulfoxide and water. J Chem Crystallogr. 2008;38:793–800.

    Article  CAS  Google Scholar 

  40. Adams RP, Allen HC Jr, Rychlewska U, Hodgson DJ. The EPR spectrum of Mn(II) doped into cis-diaquobis(1,1,1,5,5,5-hexafluoroacetylacetonato)zinc(II) and trans-diaquobis(1,1,1,5,5,5-hexafluoroacetylacetonato)zinc(II) and the crystal structure of the host crystals. Inorg Chim Acta. 1986;119:67–74.

    Article  CAS  Google Scholar 

  41. Luneau D, Rey P, Laugier J, Belorizky E, Cogne A. Ferromagnetic behavior of nickel(II)–imino nitroxide derivatives. Inorg Chem. 1992;31:3578–84.

    Article  CAS  Google Scholar 

  42. Romero RR, Cervantes-Lee F, Porter LC. Structure of cis-diaquabis(hexafluoroacetylacetonato)nickel(II)]. Acta Crystallogr. 1992;C48:993–5.

    CAS  Google Scholar 

  43. Adams H, Bailey NA, Fenton DE, Khalil RA. Cis- and trans-derived chain stacking in bis(hexafluoroacetylacetonato)metal(II) tetramethylpyrazine complexes. Inorg Chim Acta. 1993;209:55–60.

    Article  CAS  Google Scholar 

  44. Gulino A, Dapporto P, Rossi P, Fragalà I. A novel self-generating liquid MOCVD precursor for Co3O4 thin films. Chem Mater. 2003;15:3748–52.

    Article  CAS  Google Scholar 

  45. Petrukhina MA, Henck C, Li B, Block E, Jin J, Zhang S-Z, et al. Spirocyclic sulfur and selenium ligands as molecular rigid rods in coordination of transition metal centers. Inorg Chem. 2005;44:77–84.

    Article  CAS  Google Scholar 

  46. Gulino A, Castelli F, Dapporto P, Rossi P, Fragalà I. Synthesis and characterization of thin films of cadmium oxide. Chem Mater. 2002;14:704–9.

    Article  CAS  Google Scholar 

  47. Gao H-L, Cheng C, Ding B, Shi W, Song H-B, Cheng P, et al. Hydrothermal synthesis of a series of novel cis- and trans-pydc complexes with three-dimensional supramolecular architectures (pydc = pyridine-2,5-dicarboxylic acid). J Mol Struct. 2005;738:105–11.

    Article  CAS  Google Scholar 

  48. Qian H, Huang W. Synthesis and structural characterization of cis- and trans-bis(4,4′-dimethyl-2,2′-bipyridine)cadmium(II) nitrates prepared in a one-pot reaction. Transit Met Chem. 2006;31:347–52.

    Article  CAS  Google Scholar 

  49. Soldatov DV, Henegouwen AT, Enright GD, Ratcliffe CI, Ripmeester JA. Nickel(II) and zinc(II) dibenzoylmethanates: molecular and crystal structure, polymorphism, and guest- or temperature-induced oligomerization. Inorg Chem. 2001;40:1626–36.

    Article  CAS  Google Scholar 

  50. Soldatov DV, Lipkowski J. Structure reinterpretation and determination of the clathrate nature of the compounds of the general formula MX2*6Py. J Struct Chem. 1995;36:979–82.

    Article  Google Scholar 

  51. Soldatov DV, Lipkowski J. X-Ray diffraction study of a clathrate with quinoline-containing Werner complex ([NiQ4(NCS)2]*2Q). J Struct Chem. 1997;38:811–8.

    Article  CAS  Google Scholar 

  52. Rochon FD, Andruh M, Melanson R. Three-dimensional H-bonded supramolecular complexes. Synthesis and crystal structures of [Mn(μ-bpe)(H2O)4](ClO4)2*4(bpe)*2H2O and [Mn(μ-bpe)(bpe)2(H2O)2](ClO4)2*bpe*H2O, where M = Zn, Ni and bpe = 1, 2-bis(4-pyridyl)ethane. Can J Chem. 1998;76:1564–70.

    Article  CAS  Google Scholar 

  53. Tong M-L, Cai J-W, Yu X-L, Chen X-M, Ng SW, Mak TCW. Linear metal(II)-4,4′-bipyridine (4,4’-bpy) chains organized into two-dimensional rhombic networks by hydrogen bonding. Crystal structures of [Co(4,4’-bpy)(H2O)4](ClO4)2*(4,4′-bpy)2*2H2O and [Zn(4,4′-bpy)(H2O)3(ClO4)](ClO4)*(4,4′-bpy)1.5*H2O. Aust J Chem. 1998;51:637–41.

    Article  CAS  Google Scholar 

  54. Karunakaran C, Thomas KRJ, Shunmugasundaram A, Murugesan R. Synthesis, structure and spectroscopy of clathrate inclusion compounds of cobalt(II), cadmium(II) and zinc(II) trans-4-styrylpyridine nitrates as host with trans-4-styrylpyridine as guest (2:1). J Inclu Phenom. 2000;38:233–49.

    Article  CAS  Google Scholar 

  55. Komarov VY, Ukraintseva EA, Soldatov DV, Enright GD, Galkin PS, Luboradzki R, et al. Crystal structure and thermodynamic stability of the [Hg(Pyridine)4(NO3)2]*2(Pyridine) inclusion compound. J Inclu Phenom. 2004;50:227–33.

    Article  CAS  Google Scholar 

  56. Izarova NV, Sokolov MN, Rothenberger A, Ponikiewski L, Fenske D, Fedin VP. Synthesis and crystal structure of a new metal-organic coordination polymer [Fe(4,4′-bpy)3(H2O)2](PF6)2*2(4,4′-bpy)*5H2O with nanosized channels clathrate large organic molecules. C R Chimie. 2005;8:1005–10.

    CAS  Google Scholar 

  57. De Lill DT, Gunning NS, Cahill CL. Toward templated metal-organic frameworks: synthesis, structures, thermal properties, and luminescence of three novel lanthanide-adipate frameworks. Inorg Chem. 2005;44:258–66.

    Article  Google Scholar 

  58. Jiang J-J, Liu Y-R, Yang R, Pan M, Cao R, Su C-Y. The interplay of coordinative and hydrogen-bonding in directing the [M(4,4′-bpy)2(H2O)2] square-grid networks: formation of 3D porous framework [Cd(4,4′-bpy)2(H2O)2](ClO4)2(4,4′-bpy)(CH3OH)2. CrystEngComm. 2008;10:1147–53.

    Article  CAS  Google Scholar 

  59. Soldatov DV, Dyadin YA, Lipkowski J, Ogienko AG. Clathrates of the [Cu(pyridine)4(NO3)2]. Mendeleev Commum. 1997;11–3.

  60. Soldatov DV, Suwinska K, Lipkowski J, Ogienko AG. X-Ray structural analysis of the dinitratotetrapyridinecopper(II) complex and its clathrates with tetrahydrofuran and chloroform. J Struct Chem. 1999;40:781–9.

    Article  CAS  Google Scholar 

  61. Miklovič J, Krutošíková A, Baran P. Two furopyridine complexes of nickel(II) isothiocyanate. Acta Crystallogr. 2004;C60:m227–30.

    Google Scholar 

  62. Baran P, Boča M, Boča R, Krutošíková A, Miklovič J, Pelikán J, et al. Structural characterization, spectral and magnetic properties of isothiocyanate nickel(II) complexes with furopyridine derivatives. Polyhedron. 2005;24:1510–6.

    Article  CAS  Google Scholar 

  63. Mojumdar SC, Miklovič J, Krutošíková A, Valigura D, Stewart JM. Furopyridines and furopyridine-Ni(II) complexes, synthesis, thermal and spectral characterization. J Therm Anal Calorim. 2005;81:211–5.

    Article  CAS  Google Scholar 

  64. Soldatov DV, Trushin PA, Logvinenko VA, Grachev EV. Clathrate forming ability of some [MgA4X2] complexes where A = 4-methylpyridine or pyridine and X = halogen or NCS. J Struct Chem. 1993;34:232–8.

    Article  Google Scholar 

  65. Dunstan PO. Thermochemistry of adducts of nickel(II) acetylacetonate chelate with heterocyclic bases. Thermochim Acta. 1998;317:165–74.

    Article  CAS  Google Scholar 

  66. Dunstan PO. Thermochemistry of adducts of manganese(II) and copper(II) pentane-2,4-dionate with heterocyclic amines. Thermochim Acta. 2000;356:19–25.

    Article  CAS  Google Scholar 

  67. Dunstan PO. Thermochemistry of adducts of some bivalent transition metal bromides with quinoline. Thermochim Acta. 2008;468:21–6.

    Article  CAS  Google Scholar 

  68. Lajdová L’, Jóna E, Šnircová S, Miklovič J, Segl’a P, Pajtášová M, et al. Thermal properties of solid complexes with biologically important heterocyclic ligands. J Therm Anal Calorim. 2009;96:59–62.

    Article  Google Scholar 

  69. Hart HJ, Smith NO. Thermodynamics and structure of the p-xylene and p-dichlorobenzene clathrates of tetra-(4-methylpyridine)-nickel(II) thiocyanate. J Am Chem Soc. 1962;84:1816–9.

    Article  CAS  Google Scholar 

  70. Casellato F, Casu B. Thermal decomposition of clathrates formed between γ-picoline-type Werner complexes and aromatic compounds. Erdöl Kohle Erdgas Petrochem. 1969;22:71–7.

    CAS  Google Scholar 

  71. Lipkowski J, Starzewski P, Zielenkiewicz W. Thermochemical studies of the clathration of aromatic guest compounds by the host–Ni(NCS)2(4-methylpyridine)4 complex. Thermochim Acta. 1981;49:269–79.

    Article  CAS  Google Scholar 

  72. Kunsági-Máté A, Szabó K, Lemli B, Bitter I, Nagy G, Kollár L. Host-guest interaction between water-soluble calix[6]arene hexasulfonate and p-nitrophenol. Thermochim Acta. 2005;425:121–6.

    Article  Google Scholar 

  73. Kunsági-Máté S, Szabó K, Lemli B, Bitter I, Nagy G, Kollár L. Unexpected effect of charge density of the aromatic guests on the stability of calix[6]arene-phenol host-guest complexes. J Phys Chem A. 2005;109:5237–42.

    Article  Google Scholar 

  74. Zielenkiewicz W, Marcinowicz A, Cherenok S, Kalchenko VI, Poznański J. Phosphorylated calixarenes as receptors of L-amino acids and dipeptides: calorimetric determination of Gibbs energy, enthalpy and entropy of complexation. Supramol Chem. 2006;18:167–76.

    Article  CAS  Google Scholar 

  75. Carumanee S, Titwan A, Sirithunyalug J, Weiss-Greiler P, Wolschann P, Viernstein H, et al. Thermodynamics of the encapsulation by cyclodextrins. Chem Technol Biotechnol. 2006;81:523–9.

    Article  Google Scholar 

  76. Al Omari MM, Zughul MB, Davies JED, Badwan AA. Thermodynamic enthalpy-entropy compensation effects observed in the complexation of basic drug substrates with β-cyclodextrin. J Inclu Phenom. 2007;57:379–84.

    Article  CAS  Google Scholar 

  77. Koźbiał M, Poznański J. Experimental evidence of chiral crown ether complexation with aromatic amino acids. J Phys Org Chem. 2007;20:506–13.

    Article  Google Scholar 

  78. De Macedo JL, Ghesti GF, Dias JA, Dias SCL. Liquid phase calorimetry and adsorption analyses of zeolite beta acidity. Phys Chem Chem Phys. 2008;10:1584–92.

    Article  Google Scholar 

  79. Abate L, Gandolfo C. Thermal behavior of solid complexes of phenoxyalkanoic acids and divalent metals. IV. Study on cadmium and mercury(II) phenoxyacetates. J Therm Anal Calorim. 1996;46:5–14.

    Article  CAS  Google Scholar 

  80. Czakis-Sulikowska D, Radwańska-Doczekalska J, Markiewicz M, Pietrzak M. Thermal characterization of new complexes of Zn(II) and Cd(II) with some bipyridine isomers and propionates. J Therm Anal Calorim. 2008;93:789–94.

    Article  CAS  Google Scholar 

  81. Köse DA, Necefoğlu H. Synthesis and characterization of bis(nicotinamide) m-hydroxybenzoate complexes of Co(II), Ni(II), Cu(II) and Zn(II). J Therm Anal Calorim. 2008;93:509–14.

    Article  Google Scholar 

  82. Kostin GA, Borodin AO, Shubin YV, Kurat’eva NV, Emelyanov VA, Plyusnin PE, et al. Heterometallic complexes of Co2+, Ni2+, and Zn2+ with the [RuNO(NO2)4OH]2− anion and pyridine: synthesis, crystal structure, and thermolysis. Russ J Coord Chem. 2009;35:57–64.

    Article  CAS  Google Scholar 

  83. Souaya ER, Ismail EH, Mohamed AA, Milad NE. Preparation, characterization and thermal studies of some transition metal ternary complexes. J Therm Anal Calorim. 2009;95:253–8.

    Article  CAS  Google Scholar 

  84. Ukraintseva EA, Kislykh NV, Dyadin YA, Soldatov DV, Logvinenko VA. Clathrate formation in the [M(4-MePy)2(NCS)2]—4-MePy systems, where M—transition metal(II); 4-MePy—4-methylpyridine. IV. Vapour pressure of 4-methylpyridine over the clathrates [Ni(4-MePy)4(NCS)2]*(4-MePy) and [Zn(4-MePy)4(NCS)2]*(4-MePy). Sib Khim Zh. Issue 2;1993;50-7.

  85. Nassimbeni LR, Niven ML, Zemke KJ. Structures of diisothiocyanatotetrakis(1-phenyl-1-ethylamine)nickel(II): enclathration of organic guests with host isomerization. Acta Crystallogr. 1986;B42:453–61.

    CAS  Google Scholar 

  86. Ribas J, Monfort M, Resino I, Ghosh BK, Solans X, Font-Bardia M. Mononuclear bis-chelate and tris-chelate complexes of nickel(II) with selenocyanate. Molecular structure of [Ni(en)3]cis-[Ni(en)2(NCSe)2]2X2 (X = PF 6 , ClO 4 and SeCN) and trans-[Ni(en)2(NCSe)2]. Polyhedron. 1998;17:1735–9.

    Article  Google Scholar 

  87. Soldatov DV, Ripmeester JA, Shergina SI, Sokolov IE, Zanina AS, Gromilov SA, et al. α- and β-Bis(1,1,1-trifluoro-5,5-dimethyl-5-methoxyacetylacetonato)copper(II): transforming the dense polymorph into a versatile new microporous framework. J Am Chem Soc. 1999;121:4179–88.

    Article  CAS  Google Scholar 

  88. Laskar IR, Maji TK, Chaudhuri S, Ghosh A, Chaudhuri NR. Synthesis and characterization of cis and trans isomers of [NiL2(NCS)2] [L = 1-(2-aminoethyl)pyrrolidine]: X-ray single-crystal structures. Polyhedron. 2000;19:1803–7.

    Article  CAS  Google Scholar 

  89. Sousa EHS, Oliveira CP, Vasconcellos LCG, Lopes LGF, Diógenes ICN, Carvalho IMM, et al. Thermal isomerization of cis-[Fe(cyclam)Cl2]Cl*H2O complex in the solid state. Thermochim Acta. 2001;376:141–5.

    Article  CAS  Google Scholar 

  90. Rybak WK, Skarżyńska A, Szterenberg L, Ciunik Z, Głowiak T. Oxo-entity-controlled diastereomer peculiarity of rhenium(V) complexes ReOX2(P~O)py [X = Cl, Br, I; P~O = (OCMe2CMe2O)POCMe2CMe2O(-1); py = pyridine]: synthesis and molecular and crystal structural characterization. Eur. J. Inorg. Chem. 2005;4964–75.

  91. Baidina IA, Krisyuk VV, Peresypkina EV, Stabnikov PA. Phenomenon of transcis isomerization of copper(II) β-diketonate on co-crystallization with lead(II) hexafluoroacetylacetonate. J Struct Chem. 2008;49:489–93.

    Article  CAS  Google Scholar 

  92. Stabnikov PA, Zharkova GI, Smolentsev AI, Ukraintseva EA, Soldatov DV. Crystal structure and thermodynamic stability of an acetone solvate of bis(trifluoroacetylacetonato)copper(II). J Struct Chem. 2008;49:1084–9.

    Article  CAS  Google Scholar 

  93. Bagryanskaya IY, Bartashevich EV, Nikulov DK, Gatilov YV, Zibarev AV. Intermolecular interactions and structural dichotomy in 1,3,2,4-benzodithiadiazine crystals. J Struct Chem. 2009;50:127–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the University of Guelph through a start-up grant and by the Natural Sciences and Engineering Research Council through a Discovery Grant and Research Tools and Equipment Grant. We thank G. D. Enright and K. A. Udachin (Materials Structure and Function group at SIMS NRC), and S. F. Kycia and A. Gomez (Department of Physics at University of Guelph) for help with XRD measurements. We also thank D. Ben-Israel (University of Guelph) for TG of metal DBMs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Soldatov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okeke, E.B., Soldatov, D.V. Coordination and inclusion compounds formed by addition of quinoline (Q) or isoquinoline (Iq) to a metal(II) dibenzoylmethanate (Co, Ni, Zn, Cd). J Therm Anal Calorim 100, 801–810 (2010). https://doi.org/10.1007/s10973-010-0689-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0689-9

Keywords

Navigation