Journal of Thermal Analysis and Calorimetry

, Volume 102, Issue 1, pp 203–210 | Cite as

Thermal and structural characterization of two polymorphs of Atovaquone and of its chloro derivative

  • Luciana Malpezzi
  • Claudio Fuganti
  • Elisabetta Maccaroni
  • Norberto Masciocchi
  • Antonio Nardi


Atovaquone, 2-[4-(4-chlorophenyl)cyclohexyl]-3-hydroxy-1,4-naphthoquinone, is an antimicrobial medicament used to treat or prevent pneumocystis carinii pneumonia, toxoplasmosis and malaria. Two polymorphs of Atovaquone (crystal phases I and III) were isolated and their crystal and molecular structures were determined by single crystal X-ray analysis. In both crystal phases, strong hydrogen bond interactions link adjacent molecules in centrosymmetric dimers. The existence of the different polymorphs is determined by the different orientation of the dimers in the crystal packing. In addition, a crystalline phase of the 2-chloro substituted derivative, which is not stabilized by intermolecular H-bond interactions, was also studied, and compared with those of the pristine (hydroxylic) species. DSC measurements and thermodiffractometry analyses on polycrystalline batches witnessed the 100% purity of the isolated materials and disclosed the crystal-to-crystal interconversion of phase I to phase III upon heating at 210 °C.


Atovaquone Polymorphism Crystal and molecular structure Thermodiffractometry Thermal analysis 


  1. 1.
    Bernstein J. Polymorphism of pharmaceuticals. In: Polymorphism in molecular crystal. Oxford Science Publications, Oxford; 2002, pp 240–256.Google Scholar
  2. 2.
    Brittain HG. Polimorphism in pharmaceutical Solids. New York: Marcel Dekker Inc.; 1999.Google Scholar
  3. 3.
    Hilfiker RH. Polymorphism in the pharmaceutical industries. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co; 2006.Google Scholar
  4. 4.
    Giron D, Mutz M, Garnier S. Solid-state of pharmaceutical compounds. J Therm Anal Calorim. 2004;77:709–47. (and references therein).CrossRefGoogle Scholar
  5. 5.
    Szterner P, Legendre B, Sghaier M. Thermodynamics properties of polymorphic forms of theophylline. Part I: DSC, TG, X-ray study. J Therm Anal Calorim. 2009. doi: 10.1007/s10973-009-0186-1.
  6. 6.
    Barbas R, Prohens R, Puigjaner C. A new polymorph of norfloxacin. Complete characterization and relative stability of its trimorphic system. J Therm Anal Calorim. 2007;89:687–92.CrossRefGoogle Scholar
  7. 7.
    Malpezzi L, Magnone GA, Masciocchi N, Sironi A. Single crystal and powder diffraction characterization of three polymorphic forms of Acitretin. J Pharm Sci. 2005;94:1067–78.CrossRefGoogle Scholar
  8. 8.
    Maccaroni E, Alberti A, Malpezzi L, Masciocchi N, Vladiskovic C. Polymorphism of linezolid: a combined single-crystal, powder diffraction and NMR study. Int J Pharm. 2008;351:144–51.CrossRefGoogle Scholar
  9. 9.
    Maccaroni E, Alberti A, Malpezzi L, Mazzetti G, Vladiskovic C, Masciocchi N. Azelastine Hydrochloride: a power diffraction and 13C CPMAS NMR study of its anhydrous and solvated forms. Cryst Growth Des. 2009;9:517–24.CrossRefGoogle Scholar
  10. 10.
    Maccaroni E, Alberti A, Malpezzi L, Masciocchi N, Pellegatta C. Crystal chemistry of Sibutramine: thermal, diffractometric and spectroscopic characterization. J Pharm Sci. 2008;97:5229–39.CrossRefGoogle Scholar
  11. 11.
    Tarur VR. Novel Polymorphs of atovaquone and process of preparation thereof. US 2006/0241311 A1; 2006.Google Scholar
  12. 12.
    Hughes WT, Gray V, Gutteridge WE, Latter VS, Pudney M. Efficacy of a hydroxynaphthoquinone, 566C80, in experimental Pneumocystis carinii pneumonitis. Antimicrob Agents Chemother. 1990;34:225–8.Google Scholar
  13. 13.
    Fieser LF, Berliner E, Bondhus FJ, Chang FC, Dauben WG, Ettlinger MG, et al. Naphthoquinone antimalarials I. J Am Chem Soc. 1948;70:3151–5.CrossRefGoogle Scholar
  14. 14.
    Hudson AT. Atovaquone-a novel broad-spectrum anti-infective drug. Parasitol Today. 1993;9:66–8.CrossRefGoogle Scholar
  15. 15.
    Watkins ER, Meshnick SR. Drugs for malaria. Sem Pediatr Infect Dis. 2000;11:202–12.CrossRefGoogle Scholar
  16. 16.
    Kessl JJ, Meshnick SR, Trumpower BL. Modelling the molecular basis of Atovaquone resistance in parasites and pathogenic fungi. Trends Parasitol. 2007;23:494–501.CrossRefGoogle Scholar
  17. 17.
    Latter VS, Gutteridge WE. Medicaments. US 4981874; 1991.Google Scholar
  18. 18.
    Altomare A, Burla MC, Cavalli M, Cascarano GL, Giacovazzo C, Gagliardi A, et al. SIR97: a new tool for crystal structure determination and refinement. J Appl Cryst. 1999;32:115–9.CrossRefGoogle Scholar
  19. 19.
    Sheldrick GM. SHELXL-97. Program for the refinement of crystal structures. Germany: University of Göttingen; 1997.Google Scholar
  20. 20.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, et al. Mercury: visualisation and analysis of crystal structures. J Appl Cryst. 2006;39:453–7.CrossRefGoogle Scholar
  21. 21.
    Jenkins R, Snyder RL. Introduction to X-ray powder diffractometry. New York: Wiley; 1996.Google Scholar
  22. 22.
    Burger A, Ramberger A. On the polymorphism of pharmaceuticals and other molecular crystal. I. Theory and thermodynamics rules. Mikrochim Acta. 1979;2:259–71.Google Scholar
  23. 23.
    Burger A, Ramberger A. On the polymorphism of pharmaceuticals and other molecular crystal. II. Applicability and thermodynamics rules. Mikrochim Acta. 1979;2:273–316.Google Scholar
  24. 24.
    Chen X, Morris KR, Griesser UJ, Byrn SR, Stowell JG. Reactivity differences of Indomethacin solid forms with ammonia gas. J Am Chem Soc. 2002;124:15012–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Luciana Malpezzi
    • 1
  • Claudio Fuganti
    • 1
  • Elisabetta Maccaroni
    • 2
  • Norberto Masciocchi
    • 2
  • Antonio Nardi
    • 3
  1. 1.Dipartimento di ChimicaPolitecnico di MilanoMilanItaly
  2. 2.Dipartimento di Scienze Chimiche e AmbientaliUniversità dell’InsubriaComoItaly
  3. 3.LabochimSegrateItaly

Personalised recommendations