Journal of Thermal Analysis and Calorimetry

, Volume 100, Issue 3, pp 1017–1025 | Cite as

Thermal studies of DBSA-doped polyaniline/PVC blends by isothermal microcalorimetry

  • Asma Binat Afzal
  • Muhammad Javed Akhtar
  • Lars-Gunnar Svensson


A series of blends of dodecylbenzenesulfonic acid (DBSA)-doped polyaniline (PANDR) and PVC were synthesized by solution blending technique and investigated by heatflow microcalorimetry (HFC) for thermal and oxidative stability and for PVC–PANDR compatibility. FTIR results provided evidence for strong dipole–dipole interactions between PANDR and PVC. The energy of the oxidation is independent of the composition. The interaction energy and thermal stability increased with the increase of PANDR content in the blend. The activation energies calculated by using Arrhenius relationship can be employed for accelerated ageing of the synthesized blends. It has been observed that the average degradation of PANDR component is higher than that of PVC.


Blends Microcalorimetry HFC Polyaniline 



We are grateful to Higher Education Commission (HEC) of Pakistan for the financial support through indigenous scholarship scheme for Ph. D. studies of Asma Binat Afzal in science and technology (Batch II). We are thankful to Dr. Dan Forsström for his help in the experiment and useful discussions.


  1. 1.
    Pielichowski K. Thermal degradation of poly(vinyl chloride)/polyaniline conducting blends. J Therm Anal Calorim. 1998;54:171–5.CrossRefGoogle Scholar
  2. 2.
    Gul VE. Structure and properties of conducting polymer composites. Utrecht, The Netherlands: VSP; 1996.Google Scholar
  3. 3.
    Shipway AN, Willner I. Nanoparticles as structural and functional units in surface-confined architectures. Chem Commun. 2001;2035–45.Google Scholar
  4. 4.
    Tsocheva D, Tsanov T, Terlemezyan L. Ageing of conductive Polyaniline/poly(ethylene-co-vinylacetate) composites studied by thermal methods. J Therm Anal Calorim. 2002;68:159–68.CrossRefGoogle Scholar
  5. 5.
    Cao Y, Smith P, Heeger AJ. Counter-ion induced processability of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synth Met. 1992;48:91–7.CrossRefGoogle Scholar
  6. 6.
    Al-Ahmed A, Mohammad F, Rahman MZA. Composites of polyaniline and cellulose acetate: preparation, characterization, thermo-oxidative degradation and stability in terms of DC electrical conductivity retention. Synth Met. 2004;144:29–49.CrossRefGoogle Scholar
  7. 7.
    De Farias RF, Nunes LM. Thermogravimetric study about PVC-polyaniline blends. J Therm Anal Calorim. 2002;70:559–64.CrossRefGoogle Scholar
  8. 8.
    Lin FY, Chen WY, Hearn M. Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography: effects of salt, hydrophobicity of the sorbent, and structure of the protein. Anal Chem. 2001;73:3875–83.CrossRefGoogle Scholar
  9. 9.
    Forsstrom D, Svensson LG, Terselius B. Thermo-oxidative stability of polyamide 6 films III. Isothermal microcalorimetry. Polym Deg Stab. 2000;67:263–9.CrossRefGoogle Scholar
  10. 10.
    Forsstrom D, Hamskog M, Eriksson P, Terselius B. Oxidation of unstabilised polypropylene particles as studied by microcalorimetry and chemiluminescence techniques. Polym Deg Stab. 2003;81:81–8.CrossRefGoogle Scholar
  11. 11.
    MacDiarmid AG, Chiang JC, Richter AF, Somasiri NLD, Epstein AJ. Polyaniline: Synthesis and characterization of the emeraldine oxidation state by elemental analysis. In: Alcacer L, editor. Conducting polymers. Dordrecht: Reidel Publishing Co; 1987. p. 105–20.Google Scholar
  12. 12.
    Cao Y, Smith P, Heeger AJ. Counter-ion induced processibility of conducting polyaniline. Synth Met. 1993;57:3514–9.CrossRefGoogle Scholar
  13. 13.
    Suurkuusk J, Wadso I. A multichannel microcalorimetry system. Chem Scr. 1982;20:155–63.Google Scholar
  14. 14.
    Afzal AB, Akhtar MJ, Nadeem M, Ahmed M, Hassan MM, Yasin T, Mehmood M. Structural and electrical properties of polyaniline/silver nanocomposites. J Phys D Appl Phys. 2009;42:015411 (8 pp).Google Scholar
  15. 15.
    Afzal AB, Akhtar MJ, Nadeem M, Hassan MM. Investigation of structural and electrical properties of polyaniline/gold nanocomposites. J Phys Chem C. 2009;113:17560–5.CrossRefGoogle Scholar
  16. 16.
    Afzal AB, Akhtar MJ, Nadeem M, Hassan MM. Dielectric and impedance studies of DBSA doped polyaniline/PVC composites. Curr Appl Phys 2010;10:601–6.CrossRefGoogle Scholar
  17. 17.
    Ameen S, Ali V, Zulfequar M, Haq MM, Husain M. Electrical and spectroscopic characterization of polyaniline-polyvinyl chloride (PANI-PVC) blends doped with sodium thiosulphate. Physica B Condens Matter. 2008;403:2861–6.CrossRefGoogle Scholar
  18. 18.
    Cui B, Qiu H, Fang K, Fang C. Effect of vacuum annealing on characteristics of the DBSA-doped polyaniline pellets. Synth Met. 2007;157:11–6.CrossRefGoogle Scholar
  19. 19.
    Beltran M, Marcilla A. Fourier transform infrared spectroscopy applied to the study of PVC decomposition. Eur Polym J. 1997;33:1135–42.CrossRefGoogle Scholar
  20. 20.
    Pan W, Yang SL, Li G, Jiang JM. Electrical and structural analysis of conductive polyaniline/polyacrylonitrile composites. Eur Polym J. 2005;41:2127–33.CrossRefGoogle Scholar
  21. 21.
    Pielichowski K, Janowski B. Semi-interpenetrating polymer networks of polyurethane and poly(vinyl chloride). J Therm Anal Calorim. 2005;80:147–51.CrossRefGoogle Scholar
  22. 22.
    Rannou P, Nechtschein M, Travers JP, Berner D, Wolter A, Djurado D. Ageing of PANI: chemical, structural and transport consequences. Synth Met. 1999;101:734–7.CrossRefGoogle Scholar
  23. 23.
    Neoh KG, Kang ET, Tan KL. Thermal degradation of leucoemeraldine, emeraldine base and their complexes. Thermochim Acta 1990;171:279–91.CrossRefGoogle Scholar
  24. 24.
    Svensson LG. Using isothermal microcalorimetry for the prediction and testing of long-term properties of materials and products. J Therm Anal Calorim. 1997;49:1017–23.CrossRefGoogle Scholar
  25. 25.
    Elmqvist CJ, Lagerkvist PE, Svensson LG. Stability and compatibility testing using a microcalorimetric method. J Hazard Mater. 1983;7:281–90.CrossRefGoogle Scholar
  26. 26.
    Svensson LG, Taylor DE, Forsgren CK, Backman PO. Microcalorimetry and impact testing applied to the study of explosive/polymer compatibility. In: Proceedings of ADPA symposium on compatibility of plastics and other materials with explos propell pyrot. Long Beach, California, USA; 1986, p. 86–91.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Asma Binat Afzal
    • 1
    • 2
  • Muhammad Javed Akhtar
    • 1
  • Lars-Gunnar Svensson
    • 3
  1. 1.Physics DivisionPINSTECHIslamabadPakistan
  2. 2.Department of Chemical and Material EngineeringPIEASIslamabadPakistan
  3. 3.Bodycote Materials Testing ABKarlskogaSweden

Personalised recommendations