Journal of Thermal Analysis and Calorimetry

, Volume 101, Issue 3, pp 941–948 | Cite as

Crystallization mechanism and microstructure evolution of Li2O–Al2O3–SiO2 glass-ceramics with Ta2O5 as nucleating agent



Li2O–Al2O3–SiO2 glass-ceramics were prepared with Ta2O5 as nucleating agent, the crystallization mechanism and microstructure evolution were investigated by DTA, XRD, and SEM technologies. With increasing amount of Ta2O5 from 2 to 6 mol%, the crystallization activation energy decreased from 297.73 to 218.66 kJ mol−1, while the crystallization index increased from 1.76 to 3.39. In addition, the cluster of dendritic crystals and lamellar structure obtained in T-2 glass-ceramics indicated a typical two-dimensional crystallization mechanism, and the formation of spherical β-quartz solid solution in T-4 specimens, with average size of 50–70 nm, was mainly due to bulk crystallization mechanism. It was considered that Ta2O5 promoted the nucleation and crystallization of LAS glass by precipitating the crystalline precursor phase of Ta2O5, which acted as nuclei for the subsequent crystal growth. Eventually, the diffusion and crystallization process, microstructure morphology, as well as the secondary grain growth were also investigated.


Glass ceramics Crystallization Microstructure-final Grain growth Ta2O5 


  1. 1.
    McMillan PW. Glass-ceramics. 2nd ed. London: Academic Press; 1979.Google Scholar
  2. 2.
    Stookey SD. Catalyzed crystallization of glass in theory and practice. Ind Eng Chem. 1959;51:805–8.CrossRefGoogle Scholar
  3. 3.
    Beall George H., Pinckney Linda R. Nanophase glass-ceramics. J Am Ceram Soc. 1999;82:5–16.CrossRefGoogle Scholar
  4. 4.
    Riello P, Canton P, Comelato N, Polizzi S, Verita M, Fagherazzi G, et al. Nucleation and crystallization behavior of glass-ceramic materials in the Li2O–Al2O3–SiO2 system of interest for their transparency properties. J Non-Cryst Solids. 2001;288:127–39.CrossRefGoogle Scholar
  5. 5.
    Pinckney Linda R., Beall George H. Microstructural evolution in some silicate glass-ceramics: a review. J Am Ceram Soc. 2008;91:773–9.CrossRefGoogle Scholar
  6. 6.
    Nordmann Astrid, Cheng Yi-Bing. Crystallization behaviour and microstructural evolution of a Li2O–Al2O3–SiO2 glass derived from spodumene mineral. J Mater Sci. 1997;32:83–9.CrossRefGoogle Scholar
  7. 7.
    Guedes M, Ferro AC, Ferreira JMF. Nucleation and crystal growth in commercial LAS compositions. J Eur Ceram Soc. 2001;21:1187–94.CrossRefGoogle Scholar
  8. 8.
    Hu AM, Li M, Mao DL. Crystallization of spodumene-diopside in the LAS glass ceramics with CaO and MgO addition. J Therm Anal Calorim. 2007;90:185–9.CrossRefGoogle Scholar
  9. 9.
    Anmin H, Ming L, Dali M. Phase transformation in spodumene–diopside glass. J Therm Anal Calorim. 2006;84:497–501.CrossRefGoogle Scholar
  10. 10.
    Guo Xingzhong, Yang Hui, Han Chen, Song Fangfang. Nucleation of lithium aluminosilicate glass containing complex nucleation agent. Ceram Int. 2007;33:1375–9.CrossRefGoogle Scholar
  11. 11.
    Apel Elke, Hoen Christian Vant, Rheinberger Volker, Holand Wolfram. Influence of ZrO2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multi-component system. J Eur Ceram Soc. 2007;27:1571–7.CrossRefGoogle Scholar
  12. 12.
    Doherty PE, Lee DW, Davis RS. Direct observation of the crystallization of Li2O–Al2O3–SiO2 glasses containing TiO2. J Am Ceram Soc. 1967;50:77–81.CrossRefGoogle Scholar
  13. 13.
    Hu AM, Liang KM, Wang G, Zhou F, Peng F. Effect of nucleating agents on the crystallization of Li2O–Al2O3–SiO2 system glass. J Therm Anal Calorim. 2004;78:991–7.Google Scholar
  14. 14.
    Maier V, Muller G. Mechanism of oxide nucleation in lithium aluminosilicate glass-ceramics. J Am Ceram Soc. 1987;70:176–8.CrossRefGoogle Scholar
  15. 15.
    Arnault L, Gerland M, Riviere A. Mechanism of oxide nucleation in lithium aluminosilicate glass-ceramics. J Mater Sci. 2000;35:2331–45.CrossRefGoogle Scholar
  16. 16.
    Zheng X, Wen G, Song L, Huang XX. Effects of P2O5 and heat treatment on crystallization and microstructure in lithium disilicate glass ceramics. Acta Mater. 2008;56:549–58.CrossRefGoogle Scholar
  17. 17.
    An-Min Hu, Kai-Ming Liang, Fei Peng, Guo-Liang Wang, Hua Shao. Crystallization and microstructure changes in fluorine-containing Li2O–Al2O3–SiO2 glasses. Thermochim Acta. 2004;413:53–5.CrossRefGoogle Scholar
  18. 18.
    Hsu Jen-Yan, Speyer Robert F. Comparison of the effects of titania and tantalum oxide nucleating agents on the crystallization of Li2O–Al2O3·6SiO2 glasses. J Am Ceram Soc. 1989;72:2334–41.CrossRefGoogle Scholar
  19. 19.
    Donald IW, Metcalfe BL, Gerrard LA, Fong SK. The influence of Ta2O5 additions on the thermal properties and crystallization kinetics of a lithium zinc silicate glass. J Non-Cryst Solids. 2008;354:301–10.CrossRefGoogle Scholar
  20. 20.
    Zivanovic VD, Grujic SR, Tosic MB, Blagojevic NS, Nikolic JD. Non-isothermal crystallization of K2O·TiO2·3GeO2 glass. J Therm Anal Calorim. 2009;96:427–32.CrossRefGoogle Scholar
  21. 21.
    Nitsch K, Rodova M. Crystallization study of Na-Gd phosphate glass using non-isothermal DTA. J Therm Anal Calorim. 2008;91:137–40.CrossRefGoogle Scholar
  22. 22.
    Davis Mark J. Crystallization measurements using DTA methods: applications to Zerodur. J Am Ceram Soc. 2003;86:1540–6.CrossRefGoogle Scholar
  23. 23.
    Araujo EB, Idalgo E. Non-isothermal studies on crystallization kinetics of tellurite 20Li2O–80TeO2 glass. J Therm Anal Calorim. 2009;95:37–42.CrossRefGoogle Scholar
  24. 24.
    Soliman AA. Derivation of the Kissinger equation for non-isothermal glass transition peaks. J Therm Anal Calorim. 2007;89:389–92.CrossRefGoogle Scholar
  25. 25.
    Pacurariu C, Lazau RI, Lazau I, Tita D. Kinetics of non-isothermal crystallization of some glass-ceramics based on basalt. J Therm Anal Calorim. 2007;88:647–52.CrossRefGoogle Scholar
  26. 26.
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bureau Stand. 1956;57:217–21.Google Scholar
  27. 27.
    Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid-state reactions using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13:283–92.CrossRefGoogle Scholar
  28. 28.
    Chen QQ, Gai PL, Groves GW. Microstructure and grain growth in Li2O–Al2O3–SiO2 glass ceramics. J Mater Sci. 1982;17:2671–6.CrossRefGoogle Scholar
  29. 29.
    Chuyung CK. Secondary grain growth of Li2O–Al2O3–SiO–TiO2 glass-ceramics. J Am Ceram Soc. 1969;52:242–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Department of material Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations