Skip to main content
Log in

Crystallization mechanism and microstructure evolution of Li2O–Al2O3–SiO2 glass-ceramics with Ta2O5 as nucleating agent

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Li2O–Al2O3–SiO2 glass-ceramics were prepared with Ta2O5 as nucleating agent, the crystallization mechanism and microstructure evolution were investigated by DTA, XRD, and SEM technologies. With increasing amount of Ta2O5 from 2 to 6 mol%, the crystallization activation energy decreased from 297.73 to 218.66 kJ mol−1, while the crystallization index increased from 1.76 to 3.39. In addition, the cluster of dendritic crystals and lamellar structure obtained in T-2 glass-ceramics indicated a typical two-dimensional crystallization mechanism, and the formation of spherical β-quartz solid solution in T-4 specimens, with average size of 50–70 nm, was mainly due to bulk crystallization mechanism. It was considered that Ta2O5 promoted the nucleation and crystallization of LAS glass by precipitating the crystalline precursor phase of Ta2O5, which acted as nuclei for the subsequent crystal growth. Eventually, the diffusion and crystallization process, microstructure morphology, as well as the secondary grain growth were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. McMillan PW. Glass-ceramics. 2nd ed. London: Academic Press; 1979.

    Google Scholar 

  2. Stookey SD. Catalyzed crystallization of glass in theory and practice. Ind Eng Chem. 1959;51:805–8.

    Article  CAS  Google Scholar 

  3. Beall George H., Pinckney Linda R. Nanophase glass-ceramics. J Am Ceram Soc. 1999;82:5–16.

    Article  CAS  Google Scholar 

  4. Riello P, Canton P, Comelato N, Polizzi S, Verita M, Fagherazzi G, et al. Nucleation and crystallization behavior of glass-ceramic materials in the Li2O–Al2O3–SiO2 system of interest for their transparency properties. J Non-Cryst Solids. 2001;288:127–39.

    Article  CAS  Google Scholar 

  5. Pinckney Linda R., Beall George H. Microstructural evolution in some silicate glass-ceramics: a review. J Am Ceram Soc. 2008;91:773–9.

    Article  CAS  Google Scholar 

  6. Nordmann Astrid, Cheng Yi-Bing. Crystallization behaviour and microstructural evolution of a Li2O–Al2O3–SiO2 glass derived from spodumene mineral. J Mater Sci. 1997;32:83–9.

    Article  CAS  Google Scholar 

  7. Guedes M, Ferro AC, Ferreira JMF. Nucleation and crystal growth in commercial LAS compositions. J Eur Ceram Soc. 2001;21:1187–94.

    Article  CAS  Google Scholar 

  8. Hu AM, Li M, Mao DL. Crystallization of spodumene-diopside in the LAS glass ceramics with CaO and MgO addition. J Therm Anal Calorim. 2007;90:185–9.

    Article  CAS  Google Scholar 

  9. Anmin H, Ming L, Dali M. Phase transformation in spodumene–diopside glass. J Therm Anal Calorim. 2006;84:497–501.

    Article  CAS  Google Scholar 

  10. Guo Xingzhong, Yang Hui, Han Chen, Song Fangfang. Nucleation of lithium aluminosilicate glass containing complex nucleation agent. Ceram Int. 2007;33:1375–9.

    Article  CAS  Google Scholar 

  11. Apel Elke, Hoen Christian Vant, Rheinberger Volker, Holand Wolfram. Influence of ZrO2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multi-component system. J Eur Ceram Soc. 2007;27:1571–7.

    Article  CAS  Google Scholar 

  12. Doherty PE, Lee DW, Davis RS. Direct observation of the crystallization of Li2O–Al2O3–SiO2 glasses containing TiO2. J Am Ceram Soc. 1967;50:77–81.

    Article  CAS  Google Scholar 

  13. Hu AM, Liang KM, Wang G, Zhou F, Peng F. Effect of nucleating agents on the crystallization of Li2O–Al2O3–SiO2 system glass. J Therm Anal Calorim. 2004;78:991–7.

    CAS  Google Scholar 

  14. Maier V, Muller G. Mechanism of oxide nucleation in lithium aluminosilicate glass-ceramics. J Am Ceram Soc. 1987;70:176–8.

    Article  Google Scholar 

  15. Arnault L, Gerland M, Riviere A. Mechanism of oxide nucleation in lithium aluminosilicate glass-ceramics. J Mater Sci. 2000;35:2331–45.

    Article  CAS  Google Scholar 

  16. Zheng X, Wen G, Song L, Huang XX. Effects of P2O5 and heat treatment on crystallization and microstructure in lithium disilicate glass ceramics. Acta Mater. 2008;56:549–58.

    Article  CAS  Google Scholar 

  17. An-Min Hu, Kai-Ming Liang, Fei Peng, Guo-Liang Wang, Hua Shao. Crystallization and microstructure changes in fluorine-containing Li2O–Al2O3–SiO2 glasses. Thermochim Acta. 2004;413:53–5.

    Article  Google Scholar 

  18. Hsu Jen-Yan, Speyer Robert F. Comparison of the effects of titania and tantalum oxide nucleating agents on the crystallization of Li2O–Al2O3·6SiO2 glasses. J Am Ceram Soc. 1989;72:2334–41.

    Article  CAS  Google Scholar 

  19. Donald IW, Metcalfe BL, Gerrard LA, Fong SK. The influence of Ta2O5 additions on the thermal properties and crystallization kinetics of a lithium zinc silicate glass. J Non-Cryst Solids. 2008;354:301–10.

    Article  CAS  Google Scholar 

  20. Zivanovic VD, Grujic SR, Tosic MB, Blagojevic NS, Nikolic JD. Non-isothermal crystallization of K2O·TiO2·3GeO2 glass. J Therm Anal Calorim. 2009;96:427–32.

    Article  CAS  Google Scholar 

  21. Nitsch K, Rodova M. Crystallization study of Na-Gd phosphate glass using non-isothermal DTA. J Therm Anal Calorim. 2008;91:137–40.

    Article  CAS  Google Scholar 

  22. Davis Mark J. Crystallization measurements using DTA methods: applications to Zerodur. J Am Ceram Soc. 2003;86:1540–6.

    Article  CAS  Google Scholar 

  23. Araujo EB, Idalgo E. Non-isothermal studies on crystallization kinetics of tellurite 20Li2O–80TeO2 glass. J Therm Anal Calorim. 2009;95:37–42.

    Article  CAS  Google Scholar 

  24. Soliman AA. Derivation of the Kissinger equation for non-isothermal glass transition peaks. J Therm Anal Calorim. 2007;89:389–92.

    Article  CAS  Google Scholar 

  25. Pacurariu C, Lazau RI, Lazau I, Tita D. Kinetics of non-isothermal crystallization of some glass-ceramics based on basalt. J Therm Anal Calorim. 2007;88:647–52.

    Article  CAS  Google Scholar 

  26. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bureau Stand. 1956;57:217–21.

    CAS  Google Scholar 

  27. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid-state reactions using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13:283–92.

    Article  CAS  Google Scholar 

  28. Chen QQ, Gai PL, Groves GW. Microstructure and grain growth in Li2O–Al2O3–SiO2 glass ceramics. J Mater Sci. 1982;17:2671–6.

    Article  CAS  Google Scholar 

  29. Chuyung CK. Secondary grain growth of Li2O–Al2O3–SiO–TiO2 glass-ceramics. J Am Ceram Soc. 1969;52:242–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaohui Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Liang, K., Xu, B. et al. Crystallization mechanism and microstructure evolution of Li2O–Al2O3–SiO2 glass-ceramics with Ta2O5 as nucleating agent. J Therm Anal Calorim 101, 941–948 (2010). https://doi.org/10.1007/s10973-009-0598-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0598-y

Keywords

Navigation