Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 100, Issue 1, pp 361–366 | Cite as

DSC analysis of Al6061 aluminum alloy powder by rapid solidification

Effect of additives
  • Antonyraj Arockiasamy
  • Randall M. German
  • Paul Wang
  • Mark F. Horstemeyer
  • Pavan Suri
  • S. J. Park
Article

Abstract

Differential scanning calorimetry (DSC) is a powerful technique that measures the heat evolution from a sample under a controlled condition and studies the phase transformation, precipitation, and dissolution activities. In this work, we investigated the influence of admixed silicon and silicon carbide and the effect of different atmospheres on the heat flow properties and microstructure of atomized Al6061 powder using DSC and scanning electron microscopy. The DSC analysis revealed the addition of silicon considerably decreased the temperature of first endothermic peaks. With an increase in silicon content the enthalpy for the first endothermic peak increased, whereas the second endothermic peak decreased. An endothermic peak, indicating the formation of AlN, was observed for powders without the silicon addition, but was noticeably absent in the case of alloys with Si addition. The SiC addition has no influence on changing the enthalpy of the systems we investigated. The reason for this behavior is analyzed and presented in this article.

Keywords

Al6061 powder Alloying elements Composites Differential scanning calorimeter 

References

  1. 1.
    Manna A, Bhattacharayya. A study on machinability of Al/SiC-MMC. J Mater Process Technol. 2003;140:711–6.CrossRefGoogle Scholar
  2. 2.
    Tanaka H, Inomata H, Hara K, Hasegawa H. Normal sintering of aluminum-doped β-silicon carbide. J Mater Sci Lett. 1985;4:315–7.CrossRefGoogle Scholar
  3. 3.
    Lin BW, Imai M, Yano T, Iseki T. Hot-pressing of β-silicon carbide powder with aluminum-boron-carbon additives. J Am Ceram Soc. 1986;69:C67–8.CrossRefGoogle Scholar
  4. 4.
    Padture NP. In situ-toughened silicon carbide. J Am Ceram Soc. 1994;77:519–23.CrossRefGoogle Scholar
  5. 5.
    Papazian JM. Effects of silicon carbide whiskers and particles on precipitation in aluminum matrix composites. Metall Trans. 1988;19A:2945–53.Google Scholar
  6. 6.
    Bermudez VM. Auger and electron energy-loss study of the aluminum/silicon carbide interface. Appl Phys Lett. 1983;42:70–2.CrossRefGoogle Scholar
  7. 7.
    Porte L. Photoemission spectroscopy study of the aluminum/silicon carbide interface. J Appl Phys. 1986;60:635–8.CrossRefGoogle Scholar
  8. 8.
    Kannikeswaran K, Lin RY. Trace element effects on aluminum-silicon carbide interfaces. J Met. 1987;39:17–9.Google Scholar
  9. 9.
    Arsenault RJ. The strengthening of aluminum alloy 6061 by fiber and platelet silicon carbide. Mater Sci Eng. 1984;64:171–81.CrossRefGoogle Scholar
  10. 10.
    Rack HJ, Krenzer RW. Thermomechanical treatment of high purity 6061 aluminum. Metall Trans. 1977;8A:335–46.Google Scholar
  11. 11.
    Inem B. Crystallography of the second phase/SiC particles interface, nucleation of the second phase at β-SiC and its effect on interfacial bonding, elastic properties and ductility of magnesium matrix composites. J Mater Sci. 1995;30:5763–9.CrossRefGoogle Scholar
  12. 12.
    Smith JA, Limthongkul L, Sass L. Microstructures and mechanical properties of Ni-MgO composites formed by displacement and partial reduction reactions. Acta Mater. 1997;45:4241–50.CrossRefGoogle Scholar
  13. 13.
    Lee JC, Kim GH, Lee HI. Characterization of interfacial reaction in (Al2O3)p/6061 aluminum alloy composite. Mater Sci Technol. 1997;13:182–6.Google Scholar
  14. 14.
    Kondoh K, Kimura A, Watanable R. Effect of Mg on sintering phenomenon of aluminum alloy powder particle. Powder Metall. 2001;44:161–4.CrossRefGoogle Scholar
  15. 15.
    Schaffer GB, Hall BJ, Bonner SJ, Huo SH, Secombe TB. The effect of the atmosphere and the role of pore filling on the sintering of aluminium. Acta Mater. 2005;54:131–8.Google Scholar
  16. 16.
    Martin JM, Castro FJ. Liquid phase sintering of P/M aluminium alloys: effect of processing conditions. J Mater Process Technol. 2003;814:143–4.Google Scholar
  17. 17.
    Schaffer GB, Hall BJ. The influence of the atmosphere on the sintering of aluminum. Metall Mater Trans. 2002;A33:3279–84.CrossRefGoogle Scholar
  18. 18.
    Jha JA, Prasad SV, Upadhyaya GS. Effect of sintering atmosphere and alumina addition on properties of 6061 aluminum P/M alloy. J Powder Metall Int. 1989;20:18–20.Google Scholar
  19. 19.
    Fan T, Zhang D, Shi Z, Wu R, Shibayangai T, Naka M, et al. The effect of Si upon the interfacial reaction characteristics in SiCp/Al-Si system composites during multiple-remelting. J Mater Sci. 1999;34:5175–80.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Antonyraj Arockiasamy
    • 1
  • Randall M. German
    • 2
  • Paul Wang
    • 1
  • Mark F. Horstemeyer
    • 1
  • Pavan Suri
    • 3
  • S. J. Park
    • 1
  1. 1.Center for Advanced Vehicular SystemsMississippi State UniversityStarkvilleUSA
  2. 2.College of EngineeringSan Diego State UniversitySan DiegoUSA
  3. 3.HeraeusChandlerUSA

Personalised recommendations