Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 102, Issue 1, pp 187–192 | Cite as

Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions

  • C. D. Bertol
  • A. P. Cruz
  • H. K. Stulzer
  • F. S. Murakami
  • M. A. S. Silva
Article

Abstract

Primaquine (PQ) is the drug of choice for the radical cure of Plasmodium vivax malaria, and currently being administered in solid dosage form. In this study, the compatibility studies were carried out using differential scanning calorimetry (DSC), thermogravimetry (TG), and fourier transformed infrared (FT-IR). Non-isothermal and isothermal methods were employed to investigate kinetic parameters under nitrogen and air atmospheres using TG. The DSC investigations obtained by physical mixtures showed slight alterations in the melting temperatures of PQ with some excipients. The FT-IR confirmed the possible interactions obtained by DSC for the physical mixtures with PQ and lactose, magnesium stearate and mannitol. The results showed that the thermal decomposition followed a zero order kinetic in both atmospheres in non-isothermal method. The activation energy in both methods using nitrogen atmosphere was similar, and in air atmosphere the activation energy decreased.

Keywords

Thermoanalysis Primaquine Compatibility Kinetics TG DSC 

References

  1. 1.
    Baird JK, Fryauff DJ, Hoffman SL. Primaquine for prevention of malaria in travelers. Clin Infect Dis. 2003;37:1659–67.CrossRefGoogle Scholar
  2. 2.
    Vale N, Moreira R, Gomes P. Primaquine revisited six decades after its discovery. Eur J Med Chem. 2009;44:937–53.CrossRefGoogle Scholar
  3. 3.
    Bhadra A, Yadav K, Bhadra S, Jain NK. Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int J Pharm. 2005;295:221–33.CrossRefGoogle Scholar
  4. 4.
    Gaspar R, Prat V, Roland M. Nanoparticles of polyisohexylcyanoacrylate (PIHCA) as carriers of primaquine: formulation, physico-chemical characterization and acute toxicity. Int J Pharm. 1991;68:111–9.CrossRefGoogle Scholar
  5. 5.
    Green MD, D’Souza MJ, Holbrook JM, Wirtz RA. In vitro and in vivo evaluation of albumin-encapsulated primaquine diphosphate prepared by nebulization into heated oil. J Microencapsul. 2004;21:433–44.CrossRefGoogle Scholar
  6. 6.
    Mayorga P, Puisieux F, Couarraze G. Formulation study of a transdermal delivery system of primaquine. Int J Pharm. 1996;132:71–9.CrossRefGoogle Scholar
  7. 7.
    Jackson K, Young D, Pant S. Drug-excipient interaction and their affect on absorption. Res Focus. 2000;3:336–45.Google Scholar
  8. 8.
    Mura P, Faucci MT, Manderioli A, Bramanti G, Ceccarelli L. Compatibility study between ibuproxam and pharmaceutical excipients using differential scanning calorimetry, hot-stage microscopy and scanning electron microscopy. J Pharm Biomed Anal. 1998;18:151–63.CrossRefGoogle Scholar
  9. 9.
    Cides LCS, Araújo AAS, Santos-Filho M, Matos JR. Thermal behavior, compatibility study and decomposition kinetics of glimepiride under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2006;84:441–5.CrossRefGoogle Scholar
  10. 10.
    Nunes RS, Semaan FS, Riga AT, Cavalheiro ETG. Thermal behavior of verapamil hydrocholide and its association with excipients. J Therm Anal Calorim; 2009. doi: 10.1007/s10973-009-0072-x.
  11. 11.
    Giron D. Contribution of thermal methods and related techniques to the rational development of pharmaceuticals, Part 1. PSTT. 1998;1:191–9.Google Scholar
  12. 12.
    Giron D. Contribution of thermal methods and related techniques to the rational development of pharmaceuticals, Part 2. PSTT. 1998;1:262–8.Google Scholar
  13. 13.
    Silva MAS, Kelmann RG, Foppa T, Cruz AP, Bertol CD, Sartori T, et al. Thermoanalytical study of fluoxetine hydrochloride. J Therm Anal Calorim. 2007;87:463–7.CrossRefGoogle Scholar
  14. 14.
    Stulzer HK, Rodrigues PO, Cardoso TM, Matos JSR, Silva MAS. Compatibility studies between captopril and pharmaceutical excipients used in tablets formulations. J Therm Anal Calorim. 2008;91:323–8.CrossRefGoogle Scholar
  15. 15.
    Sashina ES, Janowska G, Zaborski M, Vnuchkin AV. Compatibility of fibroin/chitosan and fibroin/cellulose blends studied by thermal analysis. J Therm Anal Calorim. 2007;89:887–91.CrossRefGoogle Scholar
  16. 16.
    Gennaro AR. Remington’s the pharmaceutical sciences and practice of pharmacy. Philadelphia: Lippincott, Williams & Wilkins; 2004.Google Scholar
  17. 17.
    Mura P, Gratteri P, Faucci MT. Compatibility studies of multicomponent tablet formulations DSC and experimental mixture design. J Therm Anal Calorim. 2002;68:541–51.CrossRefGoogle Scholar
  18. 18.
    Kiss D, Zelkó R, Novak CS, Éhen ZS. Application of DSC and NIRS to study the compatibility of metronidazole with different pharmaceutical excipients. J Therm Anal Calorim. 2006;84:447–51.CrossRefGoogle Scholar
  19. 19.
    Bruni G, Amici L, Berbenni V, Marini A, Orlandi A. Drug-excipient compatibility studies: search of interaction indicators. J Therm Anal Calorim. 2002;68:561–73.CrossRefGoogle Scholar
  20. 20.
    Felix FS, Cides LCS, Angnes L, Matos JR. Thermal behavior study and decomposition kinetics of salbutamol under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2009;95:877–80.CrossRefGoogle Scholar
  21. 21.
    Burnham L, Dollimore D, Alexander K. Kinetic study of the drug acetazolamide using thermogravimetry. Thermochim Acta. 2002;392:127–33.CrossRefGoogle Scholar
  22. 22.
    Ozawa T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355:35–42.CrossRefGoogle Scholar
  23. 23.
    Al-Badr AA. Primaquine diphosphate: comprehensive profile. Profiles Drug Subst Excipients Relat Methodol. 2005;32:153–207.CrossRefGoogle Scholar
  24. 24.
    British Pharmacopoeia. 3ed. London; 1999.Google Scholar
  25. 25.
    Verma RK, Garg S. Selection of excipients for extended release formulations of glipizide through drug-excipient compatibility testing. J Pharm Biomed Anal. 2005;38:633–44.CrossRefGoogle Scholar
  26. 26.
    Oliveira GGG, Ferraz HFG, Matos JSR. Thermoanalytical study of glibenclamide and excipients. J Therm Anal Calorim. 2005;79:267–70.CrossRefGoogle Scholar
  27. 27.
    Lerdkanchanaporn S, Dollimore D, Alexander KS. A thermogravimetric study of ascorbic acid and its excipients in pharmaceutical formulations. Thermochimica Acta. 1996;284:115–26.CrossRefGoogle Scholar
  28. 28.
    Bugay DE. Characterization of the solid-state: 2. Spectroscopic techniques. Adv Drug Deliv Rev. 2001;48:43–65.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • C. D. Bertol
    • 1
  • A. P. Cruz
    • 1
  • H. K. Stulzer
    • 1
  • F. S. Murakami
    • 1
  • M. A. S. Silva
    • 1
  1. 1.Centro de Ciências da Saúde, Departamento de Ciências FarmacêuticasUniversidade Federal de Santa Catarina, Campus Universitário TrindadeFlorianópolisBrazil

Personalised recommendations