Journal of Thermal Analysis and Calorimetry

, Volume 99, Issue 1, pp 165–172 | Cite as

Negative thermal expansion materials

Thermal properties and implications for composite materials
  • Michael B. Jakubinek
  • Catherine A. Whitman
  • Mary Anne White


Finite element analysis is used to explore composites of negative thermal expansion materials with positive thermal expansion materials (ZrW2O8 in Cu and ZrO2 in ZrW2O8) and evaluate how thermal and mechanical properties, rates of cooling/heating, and geometry and packing fraction influence the overall expansion and thermal stress. During rapid temperature changes, the transient short-time thermal expansion can be considerably larger than the steady-state value. Furthermore, thermal stress in the composite can be large, especially at the interface between the materials, and can exceed the material strength.


Composites Finite element method Negative thermal expansion Thermal expansion 



We gratefully acknowledge D. Retallack for introducing us to FEM studies and a useful discussion with J. Zwanziger. This study was supported by NSERC of Canada, the Killam Trusts and the Sumner Foundation, along with the Canada Foundation for Innovation, and Atlantic Innovation Fund and other partners that fund the Facilities for Materials Characterization managed by the Institute for Research in Materials at Dalhousie University.


  1. 1.
    White MA. Properties of materials. New York: Oxford University Press; 1999.Google Scholar
  2. 2.
    Barrera GD, Bruno JAO, Barron THK, Allan NL. Negative thermal expansion. J Phys Condens Matter. 2005;17:R217−52.Google Scholar
  3. 3.
    Evans JSO, Mary TA, Sleight AW. Negative thermal expansion materials. Phys B. 1998;241:311−6.CrossRefGoogle Scholar
  4. 4.
    Pryde AKA, Hammonds KD, Dove MT, Heine V, Gale JD, Warren MC. Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7. J Phys Condens Matter. 1996;8:10973−82.CrossRefGoogle Scholar
  5. 5.
    Sleight AW. Negative thermal expansion. Therm Conduct. 2006;28:131−9.Google Scholar
  6. 6.
    Kofteros M, Rodriguez S, Tandon V, Murr LE. A preliminary study of thermal expansion compensation in cement by ZrW2O8 additions. Scr Mater. 2001;45:369−74.CrossRefGoogle Scholar
  7. 7.
    Miller W, Smith CW, Dooling P, Burgess AN, Evans KE. Tailored thermal expansivity in particulate composites for thermal stress management. Phys Status Solidi B. 2008;245:552−6.CrossRefGoogle Scholar
  8. 8.
    Qui L, White MA. The constituent additivity method to estimate heat capacities of complex inorganic solids. J Chem Educ. 2001;78:1076−9.CrossRefGoogle Scholar
  9. 9.
    Stevens R, Linford J, Woodfield BF, Boerio-Goates J, Lind C, Wilkinson AP, et al. Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion materials, cubic α-ZrW2O8 and cubic ZrMo2O8, from T = (0 to 400) K. J Chem Thermodyn. 2003;35:919−37.CrossRefGoogle Scholar
  10. 10.
    Kennedy CA, White MA. Unusual thermal conductivity of the negative thermal expansion material, ZrW2O8. Solid State Commun. 2005;134:271−6.CrossRefGoogle Scholar
  11. 11.
    Kennedy CA, White MA, Wilkinson AP, Varga T. Heat capacity, lattice dynamics, and thermodynamic stability of the negative thermal expansion material HfMo2O8. Phys Rev B. 2007;75:224302-1−224302-9.CrossRefGoogle Scholar
  12. 12.
    Yamamura Y, Nakajima N, Tsuji T, Iwasa Y, Saito K, Sorai M. Heat capacity and Grüneisen function of negative thermal expansion compound HfW2O8. Solid State Commun. 2002;121:213−7.CrossRefGoogle Scholar
  13. 13.
    Murashov V, White MA. Thermal conductivity of insulators and glasses. In: Tritt TM, editor. Thermal conductivity: theory, properties, and applications. New York: Kluwer Academic/Plenum Publishers; 2004. p. 93–104.Google Scholar
  14. 14.
    Kennedy CA, White MA, Wilkinson AP, Varga T. Low thermal conductivity of the negative thermal expansion material, HfMo2O8. Appl Phys Lett. 2007;90:151906-1−151906-3.CrossRefGoogle Scholar
  15. 15.
    Klemens PG. Thermal expansion of composites. Int J Thermophys. 1986;7:197−206.CrossRefGoogle Scholar
  16. 16.
    Yan X, Cheng X, Xu G, Wang C, Sun S, Riedel R. Preparation and thermal properties of zirconium tungstate/copper composites. Mat-wiss. 2008;39:649−53.Google Scholar
  17. 17.
    Yilmaz S, Dunand DC. Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu–60vol% ZrW2O8 composite. Compos Sci Technol. 2004;64:1895−8.CrossRefGoogle Scholar
  18. 18.
    Petorottoni CA, da Jornada JAH. Pressure-induced amorphization and negative thermal expansion in ZrW2O8. Sci. 1998;280:886−9.Google Scholar
  19. 19.
    Yilmaz S. Thermal mismatch stress development in Cu–ZrW2O8 composite investigated by synchrotron X-ray diffraction. Compos Sci Technol. 2002;62:1835−9.CrossRefGoogle Scholar
  20. 20.
    De Buysser K, Lommens P, de Meyer C, Bruneel E, Hoste S, van Driessche I. ZrO2-ZrW2O8 composites with tailor-made thermal expansion. Ceram-Silik. 2004;48:139−44.Google Scholar
  21. 21.
    De Buysser K. Negative thermal expansion in substituted ZrW2O8 and its ceramic composites. PhD Thesis. Universiteit Gent; 2007.Google Scholar
  22. 22.
    Munro RG. ZrO2 (monoclinic). In: Elastic moduli data for polycrystalline ceramics. National Institute of Standards and Technology. 2002. Accessed 31 Aug 2009.
  23. 23.
    Ganghoffer J-F. Calculation of thermal stresses in glass-ceramic composites. Mech Time Depend Mater. 2000;4:359−79.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Michael B. Jakubinek
    • 1
    • 3
  • Catherine A. Whitman
    • 2
    • 3
  • Mary Anne White
    • 1
    • 2
    • 3
  1. 1.Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxCanada
  2. 2.Department of ChemistryDalhousie UniversityHalifaxCanada
  3. 3.Institute for Research in MaterialsDalhousie UniversityHalifaxCanada

Personalised recommendations