Skip to main content
Log in

Negative thermal expansion materials

Thermal properties and implications for composite materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Finite element analysis is used to explore composites of negative thermal expansion materials with positive thermal expansion materials (ZrW2O8 in Cu and ZrO2 in ZrW2O8) and evaluate how thermal and mechanical properties, rates of cooling/heating, and geometry and packing fraction influence the overall expansion and thermal stress. During rapid temperature changes, the transient short-time thermal expansion can be considerably larger than the steady-state value. Furthermore, thermal stress in the composite can be large, especially at the interface between the materials, and can exceed the material strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. White MA. Properties of materials. New York: Oxford University Press; 1999.

    Google Scholar 

  2. Barrera GD, Bruno JAO, Barron THK, Allan NL. Negative thermal expansion. J Phys Condens Matter. 2005;17:R217−52.

    Google Scholar 

  3. Evans JSO, Mary TA, Sleight AW. Negative thermal expansion materials. Phys B. 1998;241:311−6.

    Article  Google Scholar 

  4. Pryde AKA, Hammonds KD, Dove MT, Heine V, Gale JD, Warren MC. Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7. J Phys Condens Matter. 1996;8:10973−82.

    Article  CAS  Google Scholar 

  5. Sleight AW. Negative thermal expansion. Therm Conduct. 2006;28:131−9.

    CAS  Google Scholar 

  6. Kofteros M, Rodriguez S, Tandon V, Murr LE. A preliminary study of thermal expansion compensation in cement by ZrW2O8 additions. Scr Mater. 2001;45:369−74.

    Article  CAS  Google Scholar 

  7. Miller W, Smith CW, Dooling P, Burgess AN, Evans KE. Tailored thermal expansivity in particulate composites for thermal stress management. Phys Status Solidi B. 2008;245:552−6.

    Article  CAS  Google Scholar 

  8. Qui L, White MA. The constituent additivity method to estimate heat capacities of complex inorganic solids. J Chem Educ. 2001;78:1076−9.

    Article  Google Scholar 

  9. Stevens R, Linford J, Woodfield BF, Boerio-Goates J, Lind C, Wilkinson AP, et al. Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion materials, cubic α-ZrW2O8 and cubic ZrMo2O8, from T = (0 to 400) K. J Chem Thermodyn. 2003;35:919−37.

    Article  CAS  Google Scholar 

  10. Kennedy CA, White MA. Unusual thermal conductivity of the negative thermal expansion material, ZrW2O8. Solid State Commun. 2005;134:271−6.

    Article  CAS  Google Scholar 

  11. Kennedy CA, White MA, Wilkinson AP, Varga T. Heat capacity, lattice dynamics, and thermodynamic stability of the negative thermal expansion material HfMo2O8. Phys Rev B. 2007;75:224302-1−224302-9.

    Article  CAS  Google Scholar 

  12. Yamamura Y, Nakajima N, Tsuji T, Iwasa Y, Saito K, Sorai M. Heat capacity and Grüneisen function of negative thermal expansion compound HfW2O8. Solid State Commun. 2002;121:213−7.

    Article  CAS  Google Scholar 

  13. Murashov V, White MA. Thermal conductivity of insulators and glasses. In: Tritt TM, editor. Thermal conductivity: theory, properties, and applications. New York: Kluwer Academic/Plenum Publishers; 2004. p. 93–104.

    Google Scholar 

  14. Kennedy CA, White MA, Wilkinson AP, Varga T. Low thermal conductivity of the negative thermal expansion material, HfMo2O8. Appl Phys Lett. 2007;90:151906-1−151906-3.

    Article  CAS  Google Scholar 

  15. Klemens PG. Thermal expansion of composites. Int J Thermophys. 1986;7:197−206.

    Article  Google Scholar 

  16. Yan X, Cheng X, Xu G, Wang C, Sun S, Riedel R. Preparation and thermal properties of zirconium tungstate/copper composites. Mat-wiss. 2008;39:649−53.

    CAS  Google Scholar 

  17. Yilmaz S, Dunand DC. Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu–60vol% ZrW2O8 composite. Compos Sci Technol. 2004;64:1895−8.

    Article  CAS  Google Scholar 

  18. Petorottoni CA, da Jornada JAH. Pressure-induced amorphization and negative thermal expansion in ZrW2O8. Sci. 1998;280:886−9.

    Google Scholar 

  19. Yilmaz S. Thermal mismatch stress development in Cu–ZrW2O8 composite investigated by synchrotron X-ray diffraction. Compos Sci Technol. 2002;62:1835−9.

    Article  CAS  Google Scholar 

  20. De Buysser K, Lommens P, de Meyer C, Bruneel E, Hoste S, van Driessche I. ZrO2-ZrW2O8 composites with tailor-made thermal expansion. Ceram-Silik. 2004;48:139−44.

    Google Scholar 

  21. De Buysser K. Negative thermal expansion in substituted ZrW2O8 and its ceramic composites. PhD Thesis. Universiteit Gent; 2007.

  22. Munro RG. ZrO2 (monoclinic). In: Elastic moduli data for polycrystalline ceramics. National Institute of Standards and Technology. 2002. http://www.ceramics.nist.gov/srd/summary/ZrO2m.htm. Accessed 31 Aug 2009.

  23. Ganghoffer J-F. Calculation of thermal stresses in glass-ceramic composites. Mech Time Depend Mater. 2000;4:359−79.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge D. Retallack for introducing us to FEM studies and a useful discussion with J. Zwanziger. This study was supported by NSERC of Canada, the Killam Trusts and the Sumner Foundation, along with the Canada Foundation for Innovation, and Atlantic Innovation Fund and other partners that fund the Facilities for Materials Characterization managed by the Institute for Research in Materials at Dalhousie University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Anne White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakubinek, M.B., Whitman, C.A. & White, M.A. Negative thermal expansion materials. J Therm Anal Calorim 99, 165–172 (2010). https://doi.org/10.1007/s10973-009-0458-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0458-9

Keywords

Navigation