Journal of Thermal Analysis and Calorimetry

, Volume 100, Issue 1, pp 183–189 | Cite as

The stability of inclusion compounds under heating

Part 2. Inclusion compounds of layered zinc camphorate, linked by linear N-donor ligands
  • V. Logvinenko
  • D. Dybtsev
  • V. Fedin
  • V. Drebushchak
  • M. Yutkin


The thermal decomposition of three inclusion compounds: [Zn2(camph)2dabco]·DMF·H2O, [Zn2(camph)2bipy]·3DMF·H2O and [Zn2(camph)2bpe]·5DMF·H2O was studied in the inert atmosphere. TG and DTG curves confirm multi-step decomposition process, the dehydration being the first step. Thermogravimetric data (obtained at different rates of linear heating) were processed with computer program (with ‘Model-free’ approach). Kinetic parameters of decomposition were calculated for the DMF multi-step removal, the processes are described by Avrami–Erofeev equations. The connection between the kinetic parameters and structural features of the host frameworks (ligand linker lengths and porous-free volumes) are discussed.


Coordination compounds Inclusion compounds ‘Model-free’ kinetics Non-isothermal kinetics 



The authors are grateful to Netzsch Geraetebau GmbH for the possibility to work with computer program “NETZSCH Thermokinetics 2” and RFBR for the financial support (Grants 07-03-00436 and 07-03-91208).


  1. 1.
    Kitagawa S, Kitaura R, Noro S-I. Functional porous coordination polymers. Angew Chem Int Ed. 2004;43:2334–75.CrossRefGoogle Scholar
  2. 2.
    Dybtsev DN, Yutkin MP, Peresypkina EV, Virovets AV, Serre Ch, Ferey G, et al. Isoreticular homochiral porous metal-organic structures with tunable pore size. Inorg Chem. 2007;46:6843–5.CrossRefGoogle Scholar
  3. 3.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  4. 4.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci C. 1963;6:183–95.Google Scholar
  5. 5.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  6. 6.
    Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203(C):159–65.CrossRefGoogle Scholar
  7. 7.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:478–523.Google Scholar
  8. 8.
    Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa-Flynn-Wall analysis. Thermochim Acta. 1992;203(C):167–75.CrossRefGoogle Scholar
  9. 9.
    Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermo-analytical data-advantages and limitations. Thermochim Acta. 2002;391:119–27.CrossRefGoogle Scholar
  10. 10.
    Logvinenko V, Dybtsev D, Fedin V, Drebushchak V, Yutkin M. The stability of inclusion compounds under heating. Part I. J Therm Anal Calorim. 2007;90:463–7.CrossRefGoogle Scholar
  11. 11.
    Soldatov DV, Logvinenko VA, Dyadin YuA. The clathrates formation and phase equilibrium in the system Py-Zn(NO3)2. Zhurn Neorg Khimii. 1995;40:324–8 (in Russian).Google Scholar
  12. 12.
    Soldatov DV, Ukraintseva EA, Logvinenko VA, Dyadin YuA, Grachev EV, Manakov AYu. Thermodynamic dissociation constants for [MPy4(NO3)2]·2Py clathrates (M=Mn, Co, Ni, Cu). Supramol Chem. 2000;12:237–46.CrossRefGoogle Scholar
  13. 13.
    Dyadin YuA, Soldatov DV, Logvinenko VA, Lipkowski J. Contact stabilization of host complex molecules during clathrate formation: the pyridine-zinc nitrate and the pyridine-cadmium nitrate systems. J Coord Chem. 1996;37:63–75.CrossRefGoogle Scholar
  14. 14.
    Chow WS, Lok SK. Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim. 2009;95:627–32.CrossRefGoogle Scholar
  15. 15.
    Snircoval S, Jona E, Lajdova L, Jorik V, Drabik M, Pajtasova M, et al. Ni-exchanged montmorillonite with methyl-, dimethyl- and trimethylamine and their thermal properties. J Therm Anal Calorim. 2009;96:63–6.CrossRefGoogle Scholar
  16. 16.
    Khan AH, Nurnabi M, Bala P. Studies on thermal transformation of Na–montmorillonite–glycine intercalation compounds. J Therm Anal Calorim. 2009;96:929–35.CrossRefGoogle Scholar
  17. 17.
    Bakon KH, Palmer SJ, Frost RL. Thermal analysis of synthetic reevesite and cobalt substituted reevesite (Ni,Co)6Fe2(OH)16(CO3)·4H2O. J Therm Anal Calorim. 2009. doi: 10.1007/s10973-009-0145-x.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • V. Logvinenko
    • 1
  • D. Dybtsev
    • 1
  • V. Fedin
    • 1
  • V. Drebushchak
    • 1
  • M. Yutkin
    • 1
  1. 1.Nikolaev Institute of Inorganic ChemistrySiberian Branch of Russian Academy of SciencesNovosibirsk-90Russia

Personalised recommendations