Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 100, Issue 1, pp 183–189 | Cite as

The stability of inclusion compounds under heating

Part 2. Inclusion compounds of layered zinc camphorate, linked by linear N-donor ligands
  • V. Logvinenko
  • D. Dybtsev
  • V. Fedin
  • V. Drebushchak
  • M. Yutkin
Article

Abstract

The thermal decomposition of three inclusion compounds: [Zn2(camph)2dabco]·DMF·H2O, [Zn2(camph)2bipy]·3DMF·H2O and [Zn2(camph)2bpe]·5DMF·H2O was studied in the inert atmosphere. TG and DTG curves confirm multi-step decomposition process, the dehydration being the first step. Thermogravimetric data (obtained at different rates of linear heating) were processed with computer program (with ‘Model-free’ approach). Kinetic parameters of decomposition were calculated for the DMF multi-step removal, the processes are described by Avrami–Erofeev equations. The connection between the kinetic parameters and structural features of the host frameworks (ligand linker lengths and porous-free volumes) are discussed.

Keywords

Coordination compounds Inclusion compounds ‘Model-free’ kinetics Non-isothermal kinetics 

Notes

Acknowledgements

The authors are grateful to Netzsch Geraetebau GmbH for the possibility to work with computer program “NETZSCH Thermokinetics 2” and RFBR for the financial support (Grants 07-03-00436 and 07-03-91208).

References

  1. 1.
    Kitagawa S, Kitaura R, Noro S-I. Functional porous coordination polymers. Angew Chem Int Ed. 2004;43:2334–75.CrossRefGoogle Scholar
  2. 2.
    Dybtsev DN, Yutkin MP, Peresypkina EV, Virovets AV, Serre Ch, Ferey G, et al. Isoreticular homochiral porous metal-organic structures with tunable pore size. Inorg Chem. 2007;46:6843–5.CrossRefGoogle Scholar
  3. 3.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  4. 4.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci C. 1963;6:183–95.Google Scholar
  5. 5.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  6. 6.
    Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203(C):159–65.CrossRefGoogle Scholar
  7. 7.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:478–523.Google Scholar
  8. 8.
    Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa-Flynn-Wall analysis. Thermochim Acta. 1992;203(C):167–75.CrossRefGoogle Scholar
  9. 9.
    Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermo-analytical data-advantages and limitations. Thermochim Acta. 2002;391:119–27.CrossRefGoogle Scholar
  10. 10.
    Logvinenko V, Dybtsev D, Fedin V, Drebushchak V, Yutkin M. The stability of inclusion compounds under heating. Part I. J Therm Anal Calorim. 2007;90:463–7.CrossRefGoogle Scholar
  11. 11.
    Soldatov DV, Logvinenko VA, Dyadin YuA. The clathrates formation and phase equilibrium in the system Py-Zn(NO3)2. Zhurn Neorg Khimii. 1995;40:324–8 (in Russian).Google Scholar
  12. 12.
    Soldatov DV, Ukraintseva EA, Logvinenko VA, Dyadin YuA, Grachev EV, Manakov AYu. Thermodynamic dissociation constants for [MPy4(NO3)2]·2Py clathrates (M=Mn, Co, Ni, Cu). Supramol Chem. 2000;12:237–46.CrossRefGoogle Scholar
  13. 13.
    Dyadin YuA, Soldatov DV, Logvinenko VA, Lipkowski J. Contact stabilization of host complex molecules during clathrate formation: the pyridine-zinc nitrate and the pyridine-cadmium nitrate systems. J Coord Chem. 1996;37:63–75.CrossRefGoogle Scholar
  14. 14.
    Chow WS, Lok SK. Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim. 2009;95:627–32.CrossRefGoogle Scholar
  15. 15.
    Snircoval S, Jona E, Lajdova L, Jorik V, Drabik M, Pajtasova M, et al. Ni-exchanged montmorillonite with methyl-, dimethyl- and trimethylamine and their thermal properties. J Therm Anal Calorim. 2009;96:63–6.CrossRefGoogle Scholar
  16. 16.
    Khan AH, Nurnabi M, Bala P. Studies on thermal transformation of Na–montmorillonite–glycine intercalation compounds. J Therm Anal Calorim. 2009;96:929–35.CrossRefGoogle Scholar
  17. 17.
    Bakon KH, Palmer SJ, Frost RL. Thermal analysis of synthetic reevesite and cobalt substituted reevesite (Ni,Co)6Fe2(OH)16(CO3)·4H2O. J Therm Anal Calorim. 2009. doi: 10.1007/s10973-009-0145-x.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • V. Logvinenko
    • 1
  • D. Dybtsev
    • 1
  • V. Fedin
    • 1
  • V. Drebushchak
    • 1
  • M. Yutkin
    • 1
  1. 1.Nikolaev Institute of Inorganic ChemistrySiberian Branch of Russian Academy of SciencesNovosibirsk-90Russia

Personalised recommendations