Skip to main content
Log in

The stability of inclusion compounds under heating

Part 2. Inclusion compounds of layered zinc camphorate, linked by linear N-donor ligands

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of three inclusion compounds: [Zn2(camph)2dabco]·DMF·H2O, [Zn2(camph)2bipy]·3DMF·H2O and [Zn2(camph)2bpe]·5DMF·H2O was studied in the inert atmosphere. TG and DTG curves confirm multi-step decomposition process, the dehydration being the first step. Thermogravimetric data (obtained at different rates of linear heating) were processed with computer program (with ‘Model-free’ approach). Kinetic parameters of decomposition were calculated for the DMF multi-step removal, the processes are described by Avrami–Erofeev equations. The connection between the kinetic parameters and structural features of the host frameworks (ligand linker lengths and porous-free volumes) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kitagawa S, Kitaura R, Noro S-I. Functional porous coordination polymers. Angew Chem Int Ed. 2004;43:2334–75.

    Article  CAS  Google Scholar 

  2. Dybtsev DN, Yutkin MP, Peresypkina EV, Virovets AV, Serre Ch, Ferey G, et al. Isoreticular homochiral porous metal-organic structures with tunable pore size. Inorg Chem. 2007;46:6843–5.

    Article  CAS  Google Scholar 

  3. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  4. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci C. 1963;6:183–95.

    Google Scholar 

  5. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  6. Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203(C):159–65.

    Article  CAS  Google Scholar 

  7. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:478–523.

    Google Scholar 

  8. Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa-Flynn-Wall analysis. Thermochim Acta. 1992;203(C):167–75.

    Article  CAS  Google Scholar 

  9. Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermo-analytical data-advantages and limitations. Thermochim Acta. 2002;391:119–27.

    Article  CAS  Google Scholar 

  10. Logvinenko V, Dybtsev D, Fedin V, Drebushchak V, Yutkin M. The stability of inclusion compounds under heating. Part I. J Therm Anal Calorim. 2007;90:463–7.

    Article  CAS  Google Scholar 

  11. Soldatov DV, Logvinenko VA, Dyadin YuA. The clathrates formation and phase equilibrium in the system Py-Zn(NO3)2. Zhurn Neorg Khimii. 1995;40:324–8 (in Russian).

  12. Soldatov DV, Ukraintseva EA, Logvinenko VA, Dyadin YuA, Grachev EV, Manakov AYu. Thermodynamic dissociation constants for [MPy4(NO3)2]·2Py clathrates (M=Mn, Co, Ni, Cu). Supramol Chem. 2000;12:237–46.

    Article  CAS  Google Scholar 

  13. Dyadin YuA, Soldatov DV, Logvinenko VA, Lipkowski J. Contact stabilization of host complex molecules during clathrate formation: the pyridine-zinc nitrate and the pyridine-cadmium nitrate systems. J Coord Chem. 1996;37:63–75.

    Article  CAS  Google Scholar 

  14. Chow WS, Lok SK. Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim. 2009;95:627–32.

    Article  CAS  Google Scholar 

  15. Snircoval S, Jona E, Lajdova L, Jorik V, Drabik M, Pajtasova M, et al. Ni-exchanged montmorillonite with methyl-, dimethyl- and trimethylamine and their thermal properties. J Therm Anal Calorim. 2009;96:63–6.

    Article  Google Scholar 

  16. Khan AH, Nurnabi M, Bala P. Studies on thermal transformation of Na–montmorillonite–glycine intercalation compounds. J Therm Anal Calorim. 2009;96:929–35.

    Article  CAS  Google Scholar 

  17. Bakon KH, Palmer SJ, Frost RL. Thermal analysis of synthetic reevesite and cobalt substituted reevesite (Ni,Co)6Fe2(OH)16(CO3)·4H2O. J Therm Anal Calorim. 2009. doi:10.1007/s10973-009-0145-x.

Download references

Acknowledgements

The authors are grateful to Netzsch Geraetebau GmbH for the possibility to work with computer program “NETZSCH Thermokinetics 2” and RFBR for the financial support (Grants 07-03-00436 and 07-03-91208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Logvinenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logvinenko, V., Dybtsev, D., Fedin, V. et al. The stability of inclusion compounds under heating. J Therm Anal Calorim 100, 183–189 (2010). https://doi.org/10.1007/s10973-009-0444-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0444-2

Keywords

Navigation